1.Effects of electroacupuncture on mitochondrial autophagy and Sirt1/FOXO3/PINK1/Parkin pathway in rats with learning-memory impairment after cerebral ischemia reperfusion injury.
Kaiqi SU ; Zhuan LV ; Ming ZHANG ; Lulu CHEN ; Hao LIU ; Jing GAO ; Xiaodong FENG
Chinese Acupuncture & Moxibustion 2025;45(2):193-199
OBJECTIVE:
To observe the effects of electroacupuncture (EA) at "Shenting" (GV24) and "Baihui" (GV20) on mitochondrial autophagy in hippocampal neurons and silent information regulator sirtuin 1 (Sirt1)/forkhead box O3 (FOXO3)/PTEN-inducible kinase 1 (PINK1)/Parkin pathway in rats with learning-memory impairment after cerebral ischemia reperfusion injury.
METHODS:
A total of 35 male SD rats were randomly divided into a sham operation group (9 rats) and a modeling group (26 rats). In the modeling group, middle cerebral artery occlusion method was used to establish the middle cerebral artery ischemia-reperfusion (MCAO/R) model, and 18 rats of successful modeling were randomly divided into a model group and an EA group, 9 rats in each one. EA was applied at "Shenting" (GV24) and "Baihui" (GV20) in the EA group, 30 min a time, once a day for 14 days. After modeling and on 7th and 14th days of intervention, neurologic deficit score was observed; the learning-memory ability was detected by Morris water maze test; the morphology of neurons in CA1 area of hippocampus was detected by Nissl staining; the mitochondrial morphology was observed by transmission electron microscopy; the protein expression of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B), P62, Sitrt1, FOXO3, PINK1 and Parkin was detected by Western blot.
RESULTS:
After modeling, the neurologic deficit scores in the model group and the EA group were higher than that in the sham operation group (P<0.001); on 7th and 14th days of intervention, the neurologic deficit scores in the model group were higher than those in the sham operation group (P<0.001), the neurologic deficit scores in the EA group were lower than those in the model group (P<0.05, P<0.01). After modeling, the escape latency in the model group and the EA group was prolonged compared with that in the sham operation group (P<0.001); on 9th-13th days of intervention, the escape latency in the model group was prolonged compared with that in the sham operation group (P<0.001), the escape latency in the EA group was shortened compared with that in the model group (P<0.05, P<0.01, P<0.001). The number of crossing plateau in the model group was less than that in the sham operation group (P<0.001); the number of crossing plateau in the EA group was more than that in the model group (P<0.05). In the model group, in CA1 area of hippocampus, the number of neurons was less, with sparse arrangement, nuclear fixation, deep cytoplasmic staining, and reduction of Nissl substance; the morphology of mitochondrion was swollen, membrane structure was fragmented, and autophagic lysosomes were formed. Compared with the model group, in the EA group, in CA1 area of hippocampus, the number of neurons was increased, the number of cells of abnormal morphology was decreased, and the number of Nissl substance was increased; the morphology of mitochondrion was more intact and the number of autophagic lysosomes was increased. Compared with the sham operation group, in the model group, the protein expression of Beclin-1, FOXO3, PINK1, Parkin and the LC3BⅡ/Ⅰ ratio in hippocampus were increased (P<0.01, P<0.001), while the protein expression of P62 was decreased (P<0.05). Compared with the model group, in the EA group, the protein expression of Beclin-1, Sirt1, FOXO3, PINK1, Parkin and the LC3BⅡ/Ⅰratio in hippocampus were increased (P<0.001, P<0.01), while the protein expression of P62 was decreased (P<0.001).
CONCLUSION
EA at "Shenting" (GV24) and "Baihui" (GV20) can relieve the symptoms of neurological deficits and improve the learning-memory ability in MCAO/R rats, its mechanism may relate to the modulation of Sirt1/FOXO3/PINK1/Parkin pathway and the enhancement of mitochondrial autophagy.
Animals
;
Electroacupuncture
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Forkhead Box Protein O3/genetics*
;
Reperfusion Injury/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Brain Ischemia/complications*
;
Mitochondria/genetics*
;
Autophagy
;
Protein Kinases/genetics*
;
Sirtuin 1/genetics*
;
Humans
;
Memory Disorders/psychology*
;
Signal Transduction
2.Effect of acupuncture pretreatment on PINK1/Parkin pathway-mediated mitophagy in rats with exercise-induced muscle damage.
Yulin GUO ; Ming GAO ; Huan CHEN ; Hui LI ; Xun TIAN ; Yuan ZHAO ; Gang XU ; Junling WEN ; Shaoxiong LI
Chinese Acupuncture & Moxibustion 2025;45(11):1617-1626
OBJECTIVE:
Based on the PTEN-induced hypothetical kinase 1 (PINK1)/Parkin pathway, the effect of acupuncture pretreatment on the expression of mitochondrial autophagy-related proteins in gastrocnemius muscle tissue of rats with exercise-induced muscle damage (EIMD) was observed, and the underlying mechanism of acupuncture pretreatment for the prevention and treatment of EIMD was explored.
METHODS:
Of 88 SD male rats, aged 6 weeks, 8 rats were randomly selected as a blank group, and the remaining 80 rats were randomized into a model group and an acupuncture pretreatment group, with 40 rats in each group. Either the model group or the acupuncture pretreatment group was subdivided randomly into 5 subgroups with 8 rats in each one according to the time points of sample collection, 0 h, 12 h, 24 h, 48 h and 72 h after modeling. An intermittent downhill running centrifugal exercise was carried out on an animal experimental treadmill to establish the EIMD model in the model group and the acupuncture pretreatment group. The rats in the acupuncture pretreatment group received acupuncture at "Guanyuan" (CV6) and bilateral "Zusanli" (ST36), once a day for 20 min each time, for 7 consecutive days before EIMD model preparation. Transmission electron microscopy was used to observe the ultrastructure of gastrocnemius muscle tissue in each group. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in serum were detected by ELISA. Western blot was used to detect the protein expression of PINK1, Parkin, sequestosome 1 (p62) and microtubule-associated protein light chain 3B (LC3B) in rat gastrocnemius muscle tissue. Real-time PCR was adopted to detect the mRNA expression of PINK1, Parkin, p62 and LC3B in rat gastrocnemius muscle tissue.
RESULTS:
Compared with the blank group, the mitochondria of gastrocnemius muscles showed obvious swelling in the 0 h, 12 h, 24 h, and 48 h model subgroups , autophagosomes were formed in the 12 h and 24 h model subgroups, and the mitochondrial morphology returned to normal gradually in the 72 h model subgroup. The serum MDA contents of rats in 5 model subgroups increased (P<0.01, P<0.05). The contents of SOD and CAT in the subgroups of 0 h, 12 h, 24 h and 48 h decreased (P<0.05, P<0.01). The protein and mRNA expression levels of PINK1, Parkin and LC3B in gastrocnemius muscle tissue of rats in 0 h, 12 h and 24 h subgroups were elevated (P<0.01); and the protein and mRNA expression levels of p62 in the 0 h, 12 h, 24 h and 48 h subgroups were reduced (P<0.01, P<0.05). Compared with the model subgroup at the same time point, the myofibril damage and the degree of mitochondrial swelling were mild in each acupuncture pretreatment subgroup, and the numbers of autophagosomes were fewer. The contents of MDA in the acupuncture pretreatment subgroups decreased at 0 h, 12 h, 24 h, and 48 h (P<0.05, P<0.01). The contents of SOD and CAT in the 12 h acupuncture pretreatment subgroup increased (P<0.05, P<0.01). The protein and mRNA expression levels of PINK1 and Parkin in the 0 h, 12 h, and 24 h acupuncture pretreatment subgroups decreased (P<0.01, P<0.05). The protein and mRNA expression levels of LC3B in the 12 h acupuncture pretreatment subgroup decreased (P<0.01), and that of p62 in the 0 h and 24 h acupuncture pretreatment subgroups increased (P<0.01, P<0.05).
CONCLUSION
The intermittent downhill running centrifugal exercise induces the excessive mitochondrial autophagy. Acupuncture pretreatment may attenuate EIMD, and the underlying mechanism is related to the regulation of PINK1/Parkin signaling pathway expression, reducing oxidative stress damage in skeletal muscle cells, and inhibiting mitochondrial autophagy overactivation.
Animals
;
Ubiquitin-Protein Ligases/genetics*
;
Male
;
Rats
;
Acupuncture Therapy
;
Protein Kinases/genetics*
;
Rats, Sprague-Dawley
;
Mitophagy
;
Humans
;
Muscle, Skeletal/metabolism*
;
Physical Conditioning, Animal
;
Muscular Diseases/physiopathology*
;
Signal Transduction
3.Caffeoylquinic acids from Erigeron breviscapus ameliorates cognitive impairment and mitochondrial dysfunction in AD by activating PINK1/Parkin-mediated mitophagy.
Yuan-Zhu PU ; Hai-Feng CHEN ; Xin-Yi WANG ; Can SU
China Journal of Chinese Materia Medica 2025;50(14):3969-3979
This study aimed to investigate the effects of caffeoylquinic acids from Erigeron breviscapus(EBCQA) on cognitive impairment and mitochondrial dysfunction in Alzheimer's disease(AD), and to explore its underlying mechanisms. The impacts of EBCQA on paralysis, β-amyloid(Aβ) oligomerization, and mRNA expression of mitophagy-related genes [PTEN-induced putative kinase 1(PINK1) homolog-encoding gene pink-1, Parkin homolog-encoding gene pdr-1, Bcl-2 interacting coiled-coil protein 1(Beclin 1) homolog-encoding gene bec-1, microtubule-associated protein 1 light chain 3(LC3) homolog-encoding gene lgg-1, autophagic adapter protein 62(p62) homolog-encoding gene sqst-1] were examined in the AD Caenorhabditis elegans CL4176 model, along with mitochondrial functions including adenosine triphosphate(ATP) content, enzyme activities of mitochondrial respiratory chain complexes Ⅰ,Ⅲ, and Ⅳ, and mitochondrial membrane potential. Additionally, the effects of EBCQA on the green fluorescent protein(GFP)/red fluorescent protein from Discosoma sp.(DsRed) ratio, the expression of phosphatidylethanolamine-modified and GFP-labeled LGG-1(PE-GFP::LGG-1)/GFP-labeled LGG-1(GFP::LGG-1), and GFP-labeled SQST-1(GFP::SQST-1) proteins were investigated in transgenic C. elegans strains. The effect of EBCQA on paralysis was further evaluated after RNA interference(RNAi)-mediated suppression of the pink-1 and pdr-1 genes in CL4176 strain. An AD rat model was established through intraperitoneal injection of D-galactose and intragastric administration of aluminum trichloride. The effects of β-nicotinamide mononucleotide(NMN) and EBCQA on learning and memory ability, neuronal morphology, mitophagy occurrence, mitophagy-related protein expression(PINK1, Parkin, Beclin 1, LC3-Ⅱ/LC3-Ⅰ, p62), and mitochondrial functions(ATP content; enzyme activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ; mitochondrial membrane potential) were investigated in this AD rat model. The results showed that EBCQA delayed paralysis onset in the CL4176 strain, reduced Aβ oligomer formation, and upregulated the mRNA expression levels of lgg-1, bec-1, pink-1, and pdr-1, while downregulating sqst-1 mRNA expression. EBCQA also enhanced ATP content, mitochondrial membrane potential, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ. Furthermore, EBCQA improved the PE-GFP::LGG-1/GFP::LGG-1 ratio, reduced GFP::SQST-1 expression, and decreased the GFP/DsRed ratio. Notably, the ability of EBCQA to delay paralysis was significantly reduced following RNAi-mediated suppression of pink-1 and pdr-1 in CL4176 strain. In AD rats, the administration of NMN or EBCQA significantly improved learning and memory, restored neuronal morphology in the hippocampus, increased autophagosome numbers, and upregulated the expression of PINK1, Parkin, Beclin 1, and the LC3-Ⅱ/LC3-Ⅰ ratio, while reducing p62 expression. Additionally, the treatment with NMN or EBCQA both elevated ATP content, mitochondrial respiratory chain complex Ⅰ, Ⅲ, and Ⅳ activities, and mitochondrial membrane potential in the hippocampus. The above findings indicate that EBCQA improves cognitive impairment and mitochondrial dysfunction in AD, possibly through activation of PINK1/Parkin-mediated mitophagy.
Animals
;
Alzheimer Disease/psychology*
;
Mitophagy/drug effects*
;
Mitochondria/genetics*
;
Caenorhabditis elegans/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Cognitive Dysfunction/physiopathology*
;
Rats
;
Protein Kinases/genetics*
;
Humans
;
Male
;
Disease Models, Animal
;
Caenorhabditis elegans Proteins/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
4.miR-15b-5p affects PIK3CA/AKT1 pathway through USP9X to alleviate airway inflammation in asthma.
Yuyang ZHOU ; Zhiguang WANG ; Yihua PIAO ; Xue HAN ; Yilan SONG ; Guanghai YAN ; Hongmei PIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):193-203
Objective To investigate whether miR-15b-5p can alleviate airway inflammation in asthma by negatively regulating ubiquitin specific peptidase 9X (USP9X) to down-regulate the expression of phosphatidylinositol 4, 5-diphosphate 3-kinase catalytic subunit α/AKT serine/threonine kinase 1 (PIK3CA/AKT1) pathway. Methods USP9X was predicted to be a direct target of miR-15b-5p by using an online database (miRWalk), and the luciferase reporter gene assay was performed to verify it. Co-immunoprecipitation (CO-IP) was used to verify the direct binding between USP9X and PIK3CA and the role of USP9X and its small molecule inhibitor WP1130 in the deubiquitination of PIK3CA. C57 mice were randomly divided into Control group, OVA group, OVA combined with NC group and miR-15b-5p agomir group, with 10 mice in each group. BEAS-2B cells were induced with interleukin 13 (IL-13) and treated with miR-15b-5p mimic. HE, Masson, PAS, immunohistochemistry, immunofluorescence staining, flow cytometry, Western blot and quantitative real-time PCR(qRT-PCR) were performed. Results It was found that the administration of miR-15b-5p agomir and mimic could reduce peribronchial inflammatory cells and improve airway inflammation, and miR-15b-5p could target negative regulation of USP9X. USP9X could directly bind to PIK3CA and regulate PIK3CA level in a proteasome-dependent manner, and USP9X could deubiquitinate K29-linked PIK3CA protein. Down-regulation of USP9X could increase PIK3CA ubiquitination level. WP1130, a small molecule inhibitor of USP9X, has the same effect as knockdown of USP9X, both of which could increase the ubiquitination level of PIK3CA and reduce the protein level of PIK3CA. Conclusion The miR-15b-5p/USP9X/PIK3CA/AKT1 signaling pathway may provide potential therapeutic targets for asthma.
Animals
;
MicroRNAs/metabolism*
;
Asthma/pathology*
;
Class I Phosphatidylinositol 3-Kinases/genetics*
;
Ubiquitin Thiolesterase/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Mice
;
Signal Transduction
;
Mice, Inbred C57BL
;
Humans
;
Inflammation/genetics*
;
Cell Line
;
Female
;
Male
5.Ubiquitin-specific peptidase 21 promotes M2 polarization of endometriotic macrophages by increasing FOXM1 stability.
Min DONG ; Min XU ; Derong FANG ; Yiyuan CHEN ; Mingzhe ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):603-610
Objective To explore the mechanism of ubiquitin specific peptidase 21 (USP21) increasing the stability of forkhead box protein M1 (FOXM1) and promoting M2 polarization of macrophages in endometriosis (EM). Methods Eutopic endometrial stromal cells (EESC) collected from patients and normal endometrial stromal cells (NESC) from routine health examiners were cultured in vitro, and the expression levels of USP21 and FOXM1 were detected using RT-qPCR and Western blot. EESCs were co-cultured with macrophages. M1 polarization markers of interleukin 6 (IL-6) and CXC chemokine ligand 10 (CXCL10) and M2 polarization markers of CD206 and fibronectin 1 (FN1) were tested using RT-qPCR. M2 marker CD206 was further detected by flow cytometry. IL-6, tumor necrosis factor-alpha (TNF-α), IL-10, and transforming growth factor-beta (TGF-β) levels in cell supernatant were detected by ELISA. Co-immunoprecipitation was used to assess the interaction between USP21 and FOXM1, and the ubiquitination level of FOXM1. FOXM1 protein stability was detected through cycloheximide (CHX) assay. Results USP21 and FOXM1 expression levels in the EESC group were significantly increased compared with those in the NESC group; compared with the NESC + M0 group, the EESC + M0 group showed no significant difference in the expression of M1 polarization markers (IL-6 and CXCL10), but increased expression of M2 polarization markers (CD206 and FN1), along with notably increased number of M2 macrophages; there was no significant difference in IL-6 and TNF-α levels, but increased levels of IL-10 and TGF-β in the cell supernatant. The above findings indicated that the deubiquitinase USP21 was highly expressed in EM, promoting M2 polarization of macrophages. Knocking down USP21 or FOXM1 can inhibit M2 polarization of EM macrophages. USP21 interacted with FOXM1 in EESC, leading to a decrease in FOXM1 ubiquitination level and an increase in FOXM1 protein stability. Overexpression of FOXM1 reversed the inhibitory effect of knocking down USP21 on M2 polarization of EM macrophages. Conclusion The deubiquitinase USP21 interacts with FOXM1 to increase the stability of FOXM1 and promote M2 polarization of EM macrophages.
Humans
;
Forkhead Box Protein M1/genetics*
;
Female
;
Macrophages/cytology*
;
Endometriosis/genetics*
;
Ubiquitin Thiolesterase/genetics*
;
Cells, Cultured
;
Endometrium/metabolism*
;
Ubiquitination
;
Adult
;
Interleukin-10/metabolism*
;
Interleukin-6/metabolism*
;
Protein Stability
;
Stromal Cells/metabolism*
6.NIP7 upregulates the expression of ubiquitin-conjugating enzyme E2 C to promote tumor growth in anaplastic thyroid cancer.
Yingying GONG ; Ziwen FANG ; Yixuan WANG ; Minghua GE ; Zongfu PAN
Journal of Zhejiang University. Medical sciences 2025;54(3):372-381
OBJECTIVES:
To investigate the role of nucleolar pre-rRNA processing protein NIP7 (NIP7) in maintaining the malignant phenotype of anaplastic thyroid cancer (ATC) and its molecular mechanisms.
METHODS:
NIP7 expression in ATC tissues and its gene knock-out effects in ATC cells were analyzed using gene expression microarray (GSE33630), proteome database (IPX0008941000) and the Dependency Map database, respectively. Expression and localization of NIP7 in normal thyroid cells, papillary thyroid cancer cells, and ATC cells were detected by Western blotting. Small interfering RNA (siRNA) was transfected into ATC cells, and the knockdown efficiency of NIP7 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell proliferation was assessed by CCK-8 assay, colony formation was evaluated by colony formation assay, and tumor growth was assessed by xenograft tumor model in nude mice. SUnSET (surface sensing of translation) assay combined with co-immunoprecipitation were employed to evaluate the effect of NIP7 silencing on ubiquitin-conjugating enzyme E2 C (UBE2C) translation. Finally, gene set enrichment analysis was used to identify shared pathways of NIP7 and UBE2C, which were validated by qRT-PCR.
RESULTS:
Compared with normal tissues and papillary thyroid cancer, NIP7 was significantly upregulated in ATC tissues, and had a gene knock-out fitness effect on different ATC cell lines. The relative protein levels of NIP7 in ATC cells were significantly higher than those in normal thyroid follicular cells, and the protein was mainly expressed in the nucleus. NIP7 silencing significantly inhibited cell proliferation and reduced colony formation. Xenograft tumor model showed that NIP7 knockdown significantly slowed down the growth of ATC xenograft, and the tumor volume and weight were significantly lower than those in the control group (all P<0.05). NIP7 silencing downregulated the protein level of UBE2C, but did not affect the expression of UBE2C mRNA. Compared to the control group, UBE2C silencing significantly inhibited ATC cells proliferation (P<0.01) and colony formation (P<0.05). UBE2C overexpression reversed the proliferation-inhibitory effect induced by NIP7 silencing (P<0.01). Gene set enrichment analysis indicated that NIP7 and UBE2C were both involved in DNA replication. NIP7 or UBE2C silencing could significantly downregulate the expression levels of DNA polymerase epsilon, catalytic subunit 2 and replication factor C4 in DNA replication pathway.
CONCLUSIONS
NIP7 promotes ATC tumor growth by upregulating UBE2C to mediate DNA replication.
Humans
;
Ubiquitin-Conjugating Enzymes/genetics*
;
Thyroid Neoplasms/genetics*
;
Thyroid Carcinoma, Anaplastic/genetics*
;
Animals
;
Mice, Nude
;
Mice
;
Cell Line, Tumor
;
Cell Proliferation
;
Up-Regulation
;
RNA, Small Interfering/genetics*
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
7.Yiqi Yangyin Huazhuo Tongluo Formula alleviates diabetic podocyte injury by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy.
Kelei GUO ; Yingli LI ; Chenguang XUAN ; Zijun HOU ; Songshan YE ; Linyun LI ; Liping CHEN ; Li HAN ; Hua BIAN
Journal of Southern Medical University 2025;45(1):27-34
OBJECTIVES:
To investigate the protective effect of Yiqi Yangyin Huazhuo Tongluo Formula (YYHT) against high glucose-induced injury in mouse renal podocytes (MPC5 cells) and the possible mechanism.
METHODS:
Adult Wistar rats were treated with 19, 38, and 76 g/kg YYHT or saline via gavage for 7 days to prepare YYHT-medicated or blank sera for treatment of MPC5 cells cultured in high glucose (30 mmol/L) prior to transfection with a miR-21a-5p inhibitor or a miR-21a-5p mimic. The changes in miR-21a-5p expressions and the mRNA levels of FoxO1, PINK1, and Parkin in the treated cells were detected with qRT-PCR, and the protein levels of nephrin, podocin, FoxO1, PINK1, and Parkin were detected with Western blotting. Autophagic activity in the cells were evaluated with MDC staining. The effect of miR-21a-5p mimic on FoxO1 transcription and the binding of miR-21a-5p to FoxO1 were examined with luciferase reporter gene assay and radioimmunoprecipitation assay.
RESULTS:
MPC5 cells exposed to high glucose showed significantly increased miR-21a-5p expression, lowered expressions of FoxO1, PINK1, and Parkin1 mRNAs, and reduced levels of FoxO1, PINK1, parkin, nephrin, and podocin proteins and autophagic activity. Treatment of the exposed cells with YYHT-medicated sera and miR-21a-5p inhibitor both significantly enhanced the protein expressions of nephrin and podocin, inhibited the expression of miR-21a-5p, increased the mRNA and protein expressions of FoxO1, PINK1 and Parkin, and upregulated autophagic activity of the cells. Transfection with miR-21a-5p mimic effectively inhibited the transcription of FoxO1 and promoted the binding of miR-21a-5p to FoxO1 in MPC5 cells, and these effects were obviously attenuated by treatment with YYHT-medicated sera.
CONCLUSIONS
YYHT-medicated sera alleviate high glucose-induced injury in MPC5 cells by regulating miR-21a-5p/FoxO1/PINK1-mediated mitochondrial autophagy.
Animals
;
MicroRNAs/genetics*
;
Podocytes/pathology*
;
Drugs, Chinese Herbal/pharmacology*
;
Autophagy/drug effects*
;
Rats, Wistar
;
Protein Kinases/metabolism*
;
Rats
;
Forkhead Box Protein O1
;
Mice
;
Mitochondria/drug effects*
;
Ubiquitin-Protein Ligases/metabolism*
;
Glucose
;
Diabetic Nephropathies
;
Male
;
Membrane Proteins/metabolism*
;
Intracellular Signaling Peptides and Proteins
8.WW domain-containing ubiquitin E3 ligase 1 regulates immune infiltration in tumor microenvironment of ovarian cancer.
Xiaojuan GUO ; Ruijuan DU ; Liping CHEN ; Kelei GUO ; Biao ZHOU ; Hua BIAN ; Li HAN
Journal of Southern Medical University 2025;45(5):1063-1073
OBJECTIVES:
To explore the association of the expression of WW domain-containing ubiquitin E3 ligase 1 (WWP1) with immune infiltration in tumor microenvironment (TME) of ovarian cancer.
METHODS:
Ovarian cancer patient data from The Cancer Genome Atlas (TCGA) were used to analyze the association of WWP1 expression with patient prognosis. TISCH2 was utilized to analyze the changes in immune cell subtypes in TME of metastatic tumor and after chemotherapy. The impact of WWP1 on immune cell infiltration, somatic copy number alterations of WWP1 and evolution of immune cell subtypes was evaluated using TIMER and TIGER pseudo-time analysis. A deep learning model was used to analyze TCGA pathological images to investigate the effect of WWP1 on TME of ovarian cancer. RNA-seq analysis was conducted to identify the differentially expressed genes in WWP1-overexpressing SKOV3 cells and validate immune infiltration. Multicolor immunofluorescence assay was used to analyze the immune markers in SKOV3 and SKOV3/DDP cell xenografts in nude mice.
RESULTS:
The patients with high WWP1 expression levels had significantly lower overall survival rate (P=0.0012). High WWP1 expression levels and Stage IV disease were both associated with a poor prognosis (P<0.05). In metastatic ovarian cancer or after chemotherapy, the percentages of malignant tumor cells and tumor-associated fibroblasts increased in the TME, accompanied by elevated WWP1 levels. WWP1 expression level was positively correlated with pro-tumorigenic immunosuppressive cells (r=0.1323-0.3955, P<0.05) and negatively with tumor-inhibiting immune cells (r=-0.1949- -0.1333, P<0.05). Specific copy number alterations of WWP1 also influenced CD8+ T cell percentage and neutrophil infiltration levels in the TME. RNA-seq analysis of WWP1-overexpressing SKOV3 cells and immunofluorescence assay of the tumor-bearing mice yielded findings consistent with those of bioinformatics analysis.
CONCLUSIONS
WWP1 may serve as a prognostic biomarker and a potential target for immune regulation in the TME of ovarian cancer.
Female
;
Ovarian Neoplasms/genetics*
;
Humans
;
Ubiquitin-Protein Ligases/metabolism*
;
Tumor Microenvironment/immunology*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Mice, Nude
;
Prognosis
;
Gene Expression Regulation, Neoplastic
9.USP47 Regulates Excitatory Synaptic Plasticity and Modulates Seizures in Murine Models by Blocking Ubiquitinated AMPAR Degradation.
Juan YANG ; Haiqing ZHANG ; You WANG ; Yuemei LUO ; Weijin ZHENG ; Yong LIU ; Qian JIANG ; Jing DENG ; Qiankun LIU ; Peng ZHANG ; Hao HUANG ; Changyin YU ; Zucai XU ; Yangmei CHEN
Neuroscience Bulletin 2025;41(10):1805-1823
Epilepsy is a chronic neurological disorder affecting ~65 million individuals worldwide. Abnormal synaptic plasticity is one of the most important pathological features of this condition. We investigated how ubiquitin-specific peptidase 47 (USP47) influences synaptic plasticity and its link to epilepsy. We found that USP47 enhanced excitatory postsynaptic transmission and increased the density of total dendritic spines and the proportion of mature dendritic spines. Furthermore, USP47 inhibited the degradation of the ubiquitinated α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit glutamate receptor 1 (GluR1), which is associated with synaptic plasticity. In addition, elevated levels of USP47 were found in epileptic mice, and USP47 knockdown reduced the frequency and duration of seizure-like events and alleviated epileptic seizures. To summarize, we present a new mechanism whereby USP47 regulates excitatory postsynaptic plasticity through the inhibition of ubiquitinated GluR1 degradation. Modulating USP47 may offer a potential approach for controlling seizures and modifying disease progression in future therapeutic strategies.
Animals
;
Receptors, AMPA/metabolism*
;
Neuronal Plasticity/physiology*
;
Seizures/physiopathology*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Mice
;
Ubiquitin Thiolesterase/genetics*
;
Male
;
Excitatory Postsynaptic Potentials/physiology*
;
Ubiquitination
;
Dendritic Spines/metabolism*
;
Hippocampus/metabolism*
10.TRIM4 modulates the ubiquitin-mediated degradation of hnRNPDL and weakens sensitivity to CDK4/6 inhibitor in ovarian cancer.
Xiaoxia CHE ; Xin GUAN ; Yiyin RUAN ; Lifei SHEN ; Yuhong SHEN ; Hua LIU ; Chongying ZHU ; Tianyu ZHOU ; Yiwei WANG ; Weiwei FENG
Frontiers of Medicine 2025;19(1):121-133
Ovarian cancer is the most lethal malignancy affecting the female reproductive system. Pharmacological inhibitors targeting CDK4/6 have demonstrated promising efficacy across various cancer types. However, their clinical benefits in ovarian cancer patients fall short of expectations, with only a subset of patients experiencing these advantageous effects. This study aims to provide further clinical and biological evidence for antineoplastic effects of a CDK4/6 inhibitor (TQB4616) in ovarian cancer and explore underlying mechanisms involved. Patient-derived ovarian cancer organoid models were established to evaluate the effectiveness of TQB3616. Potential key genes related to TQB3616 sensitivity were identified through RNA-seq analysis, and TRIM4 was selected as a candidate gene for further investigation. Subsequently, co-immunoprecipitation and GST pull-down assays confirmed that TRIM4 binds to hnRNPDL and promotes its ubiquitination through RING and B-box domains. RIP assay demonstrated that hnRNPDL binded to CDKN2C isoform 2 and suppressed its expression by alternative splicing. Finally, in vivo studies confirmed that the addition of siTRIM4 significantly improved the effectiveness of TQB3616. Overall, our findings suggest that TRIM4 modulates ubiquitin-mediated degradation of hnRNPDL and weakens sensitivity to CDK4/6 inhibitors in ovarian cancer treatment. TRIM4 may serve as a valuable biomarker for predicting sensitivity to CDK4/6 inhibitors in ovarian cancer.
Humans
;
Female
;
Ovarian Neoplasms/pathology*
;
Animals
;
Tripartite Motif Proteins/genetics*
;
Mice
;
Cyclin-Dependent Kinase 4/antagonists & inhibitors*
;
Cell Line, Tumor
;
Cyclin-Dependent Kinase 6/antagonists & inhibitors*
;
Protein Kinase Inhibitors/pharmacology*
;
Ubiquitin/metabolism*
;
Xenograft Model Antitumor Assays
;
Ubiquitination
;
Antineoplastic Agents/pharmacology*

Result Analysis
Print
Save
E-mail