1.Research advances on ubiquitin C-terminal hydrolase in oncogenesis and progression.
Journal of Zhejiang University. Medical sciences 2015;44(2):217-222
By regulating the ubiquitination and deubiquitination of key proteins, ubiquitin-proteasome system mediates a variety of cellular activities. Ubiquitin C-terminal hydrolase (UCH) is a deubiquitinating enzyme which can remove ubiquitin chains at the end of ubiquited proteins. The abnormal expression of UCH has been found in a variety of tumor tissues, indicating that it participates in the process of tumor development. Here we review the characteristics of UCH members and current understanding about the role of UCH in tumor development, and the potential target for cancer treatment.
Carcinogenesis
;
Disease Progression
;
Humans
;
Neoplasms
;
Ubiquitin
;
Ubiquitin Thiolesterase
2.Progress in ubiquitin, ubiquitin chain and protein ubiquitination.
Qiuyan LAN ; Yuan GAO ; Yanchang LI ; Xuechuan HONG ; Ping XU
Chinese Journal of Biotechnology 2016;32(1):14-30
Protein ubiquitination is one of the most important and widely exist protein post-translational modifications in eukaryotic cells, which takes the ubiquitin and ubiquitin chains as signal molecules to covalently modify other protein substrates. It plays an important roles in the control of almost all of the life processes, including gene transcription and translation, signal transduction and cell-cycle progression, besides classical 26S protesome degradation pathway. Varied modification sites in the same substrates as well as different types of ubiquitin linkages in the same modification sites contain different structural information, which conduct different signal or even determine the fate of the protein substrates in the cell. Any abnormalities in ubiquitin chain formation or its modification process may cause severe problem in maintaining the balance of intracellular environment and finally result in serious health problem of human being. In this review, we discussed the discovery, genetic characteristics and the crystal structure of the ubiquitin. We also emphasized the recent progresses of the assembly processes, structure and their biological function of ubiquitin chains. The relationship between the disregulation and related human diseases has also been discussed. These progress will shed light on the complexity of proteome, which may also provide tools in the new drug research and development processes.
Humans
;
Proteome
;
Ubiquitin
;
chemistry
;
Ubiquitination
3.Modulating cellular balance of Rps3 mono-ubiquitination by both Hel2 E3 ligase and Ubp3 deubiquitinase regulates protein quality control.
Youjin JUNG ; Hag Dong KIM ; Hee Woong YANG ; Hye Jin KIM ; Chang Young JANG ; Joon KIM
Experimental & Molecular Medicine 2017;49(11):e390-
When a ribosome complex is stalled during the translation elongation process in eukaryotes, the mono-ubiquitination of Rps3 has recently been shown to be critical to ribosome quality control. We have discovered that the regulatory role of Rps3 mono-ubiquitination is controlled by a deubiquitinase. We also showed that an autophagic signal appears to be coupled to the mono-ubiquitination of Rps3p through the entrance of Ubp3p into the autophagosome in yeasts. The mono-ubiquitination of the Rps3 protein is tightly modulated by reciprocal action between the Hel2p E3 ligase and the Ubp3p deubiquitinase in yeasts and the reciprocal action between the RNF123 E3 ligase and the USP10 deubiquitinase in mammalian cells. We also found that the Ubp3p/USP10 deubiquitinases critically modulate Hel2p/RNF123-mediated Rps3p mono-ubiquitination. In addition, we found that Hel2p/RNF123 and Ubp3p/USP10 appeared to be differently localized in the ribosome complex after ultraviolet irradiation. Together, our results support a model in which coordinated ubiquitination and deubiquitination activities can finely balance the level of regulatory Rps3p mono-ubiquitination in ribosome-associated quality control and autophagy processes.
Autophagy
;
Eukaryota
;
Quality Control*
;
Ribosomes
;
Ubiquitin
;
Ubiquitin-Protein Ligases*
;
Ubiquitin-Specific Proteases
;
Ubiquitination
;
Yeasts
5.Advances in the research of mechanism of protein ubiquitination in wound healing.
Chinese Journal of Burns 2016;32(2):119-121
Ubiquitin, a critical small molecular protein, plays an important role in regulating multiple signaling pathways. Ubiquitination is a post-translational modification induced by ubiquitin through an ATP-dependent enzyme catalyzed reaction. A large number of proteins in the complicated signaling network participate in wound healing. This paper reviews the research progress in regulation of ubiquitin and ubiquitination for wound healing processes regarding the recent years.
Signal Transduction
;
physiology
;
Ubiquitin
;
metabolism
;
Ubiquitin-Protein Ligases
;
physiology
;
Ubiquitination
;
Wound Healing
;
physiology
6.Application of proteomics in deubiquitinases research.
Yanchang LI ; Yuan GAO ; Zhongwei XU ; Qiuyan LAN ; Ping XU
Chinese Journal of Biotechnology 2014;30(9):1341-1350
As the major pathway mediating specific protein degradation in eukaryotes, ubiquitin-proteasome system (UPS) is involved in various physiological and pathological processes such as cell cycle regulation, immune response, signal transduction and DNA-repair. Deubiquitinases (DUB) maintain the balance of UPS and related physiological processes via reversibly removing ubiquitin from the covalently modified protein substrates, which have been implicated in various disease processes in case of their imbalance expression. Because DUB plays critical regulating roles in the UPS pathway, they may be also the ideal drug targets for severe and intractable human diseases, such as cancer and neurodegenerative disease. With the rapid development of proteomic technology, systematical investigation of specific substrates and interacting proteins of varied DUB via mass spectrometry approach may shed light on these DUB's biological function and regulating roles in the physiological and pathogenic states. In this review, we briefly introduce the characteristics of DUB and summarize the recent application and progresses of proteomics in DUB research.
Humans
;
Mass Spectrometry
;
Proteasome Endopeptidase Complex
;
metabolism
;
Proteomics
;
Signal Transduction
;
Ubiquitin
;
metabolism
;
Ubiquitin-Specific Proteases
;
metabolism
7.The Role of Tripartite Motif Family Proteins in TGF-β Signaling Pathway and Cancer
Journal of Cancer Prevention 2018;23(4):162-169
TGF-β signaling plays a tumor suppressive role in normal and premalignant cells but promotes tumor progression during the late stages of tumor development. The TGF-β signaling pathway is tightly regulated at various levels, including transcriptional and post-translational mechanisms. Ubiquitination of signaling components, such as receptors and Smad proteins is one of the key regulatory mechanisms of TGF-β signaling. Tripartite motif (TRIM) family of proteins is a highly conserved group of E3 ubiquitin ligase proteins that have been implicated in a variety of cellular functions, including cell growth, differentiation, immune response, and carcinogenesis. Recent emerging studies have shown that some TRIM family proteins function as important regulators in tumor initiation and progression. This review summarizes current knowledge of TRIM family proteins regulating the TGF-β signaling pathway with relevance to cancer.
Carcinogenesis
;
Humans
;
Smad Proteins
;
Transforming Growth Factor beta
;
Ubiquitin
;
Ubiquitin-Protein Ligases
;
Ubiquitination
8.Molecular mechanism for the substrate recognition of USP7.
Jingdong CHENG ; Ze LI ; Rui GONG ; Jian FANG ; Yi YANG ; Chang SUN ; Huirong YANG ; Yanhui XU
Protein & Cell 2015;6(11):849-852
9.Pja2 Inhibits Wnt/β-catenin Signaling by Reducing the Level of TCF/LEF1
Yonghee SONG ; Somyung LEE ; Jeong Rae KIM ; Eek hoon JHO
International Journal of Stem Cells 2018;11(2):242-247
Ubiquitination of proteins plays an essential role in various cellular processes, including protein degradation, DNA repair, and cell signaling pathways. Previous studies have shown that protein ubiquitination is implicated in regulating pluripotency as well as fate determination of stem cells. To identify how protein ubiquitination affects differentiation of embryonic stem cells, we analyzed microarray data, which are available in the public domain, of E3 ligases and deubiquitinases whose levels changed during stem cell differentiation. Expression of pja2, a member of the RING-type E3 ligase family, was up-regulated during differentiation of stem cells. Wnt/β-catenin signaling is one of the most important signaling pathways for regulation of the self-renewal and differentiation of embryonic stem cells. Pja2 was shown to bind to TCF/LEF1, which are transcriptional factors for Wnt/β-catenin signaling, and regulate protein levels by ubiquitination, leading to down-regulation of Wnt signaling activity. Based on these results, we suggest that E3 ligase Pja2 regulates stem cell differentiation by controlling the level of TCF/LEF1 by ubiquitination.
DNA Repair
;
Down-Regulation
;
Embryonic Stem Cells
;
Humans
;
Ligases
;
Proteolysis
;
Public Sector
;
Stem Cells
;
Ubiquitin
;
Ubiquitin-Protein Ligases
;
Ubiquitin-Specific Proteases
;
Ubiquitination
10.Herpesvirus-encoded Deubiquitinating Proteases and Their Roles in Regulating Immune Signaling Pathways.
Journal of Bacteriology and Virology 2013;43(4):244-252
Viruses interact with the host ubiquitination system in a variety of ways. Viral proteins are often a substrate for ubiquitination, which leads to proteasomal degradation. Viruses also have functions to modify the cellular ubiquitination machinery. Recently, deubiquitinating protease (DUB) activity has been found in many viral proteins. In herpesviruses, the DUB domain is found within the large tegument protein, which is conserved in all members of the herpesvirus family. Although a limited number of viral and cellular targets have been identified to date, accumulating evidence shows that herpesviral DUBs may primarily target key cellular regulators of immune signaling pathways to promote viral replication. In this review, we summarize the recent findings on viral DUBs. In particular, we focus on the herpesviral DUBs and their targets, and discuss their potential roles in the regulation of immune signaling pathways.
Herpesviridae
;
Humans
;
Peptide Hydrolases*
;
Ubiquitin
;
Ubiquitination
;
Viral Proteins