1.Recombinant adenovirus-mediated expression of tyrosine hydroxylase in 293 cells and activity assay of the expressed protein in vitro by capillary electrophoresis.
Wen-ju WANG ; Mao-sheng SUN ; Min YAN ; Tian-hong XIE ; Guang-ming ZHANG ; Hong-jun LI
Journal of Southern Medical University 2010;30(4):681-685
OBJECTIVETo construct a recombinant adenovirus for carry tyrosine hydroxylase (TH) gene and expressing bioactive TH protein in the animal model of Parkinson disease.
METHODSThe TH gene was inserted into the shuttle plasmid, which was transformed into E.coli BJ-5183 for homologous recombination with the adenovirus genome. 293 cells were transfected with the recombinant adenovirus genome to obtain the recombinant virus, and the transcription and expression of TH were determined by RT-PCR and immunofluorescence assay, respectively. The production of L-DOPA in the in vitro reaction system was determined using capillary electrophoresis.
RESULTSWe have successfully constructed the recombinant adenovirus. The TH mRNA and the corresponding protein were detected by RT-PCR and immunofluoresence assay in 293 cells. L-DOPA was also detected in the reaction system.
CONCLUSIONThe adenovirus constructed allows efficient expression of bioactive TH protein in vitro, which provides a basis for future study of gene therapy of Parkinson disease in animal models.
Adenoviridae ; genetics ; metabolism ; Cell Line ; Electrophoresis, Capillary ; Escherichia coli ; genetics ; metabolism ; Genetic Therapy ; Genetic Vectors ; genetics ; Humans ; Levodopa ; analysis ; biosynthesis ; genetics ; Parkinson Disease ; therapy ; Recombinant Proteins ; biosynthesis ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Transfection ; Tyrosine 3-Monooxygenase ; biosynthesis ; genetics
2.Tyrosine hydroxylase deficiency: a case of autosomal recessive dopa-responsive dystonia.
Dongqiong TAN ; Yafen ZHANG ; Jun YE ; Lianshu HAN ; Wenjuan QIU ; Xuefan GU ; Huiwen ZHANG
Chinese Journal of Pediatrics 2014;52(8):616-619
OBJECTIVETo analyze the clinical characteristics of the patient with tyrosine hydroxylase deficiency, and investigate it's molecular mechanism.
METHODThe clinical characteristics of a patient with tyrosine hydroxylase deficiency were summarized and analyzed, his and his family's peripheral blood specimens were collected after informed consent was signed. All exons and the intron-exon boundaries of guanosine triphosphate hydroxylase I gene, tyrosine hydroxylase gene and sepiapterin reductase gene were examined by DNA-PCR, bi-directional sequencing.
RESULTThe patient was a 3-year-old boy, presented with unexplained dystonia for 3 years, without significant impairment of intelligence. Physical examination showed limb muscle strength grade V, rigidity of extremities, hypertonicity, brisk deep tendon reflexes in limbs, without obvious abnormalities in auxiliary examination, such as brain MRI, hepatic biochemical panel, creatine kinase, and ceruloplasmin. He dramatically responded to small doses of levodopa in the follow-up for half a year. A homozygous missense change in exon 5 of TH gene, c.605G > A (p.R202H), which was a known pathogenic mutation, was found in the patient. His parents were heterozygous for the R202H mutation.
CONCLUSIONThe age of onset in tyrosine hydroxylase deficiency patients is usually within the first year of life. Unexplained dystonia and hypokinesia were the main clinical features of tyrosine hydroxylase deficiency. The dopa-responsive effects for some patients are so obvious that we should strengthen awareness of the disease. TH gene c.605G > A (p.R202H) may be a common type of causative mutations for the mild form at home and abroad.
Brain ; metabolism ; pathology ; Catecholamines ; biosynthesis ; Child, Preschool ; DNA ; genetics ; DNA Mutational Analysis ; Dopamine Agents ; administration & dosage ; therapeutic use ; Dystonic Disorders ; drug therapy ; genetics ; metabolism ; Homozygote ; Humans ; Hypokinesia ; drug therapy ; genetics ; metabolism ; Levodopa ; administration & dosage ; therapeutic use ; Male ; Muscle Rigidity ; drug therapy ; genetics ; metabolism ; Mutation, Missense ; Polymerase Chain Reaction ; Tyrosine 3-Monooxygenase ; deficiency ; genetics ; metabolism
3.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
4.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
5.Moutan Cortex Radicis inhibits the nigrostriatal damage in a 6-OHDA-induced Parkinson's disease model.
Yeong-Gon CHOI ; Yeon-Mi HONG ; Li-Hua KIM ; Sujung YEO ; Sabina LIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):490-498
The traditionally used oriental herbal medicine Moutan Cortex Radicis [MCR; Paeonia Suffruticosa Andrews (Paeoniaceae)] exerts anti-inflammatory, anti-spasmodic, and analgesic effects. In the present study, we investigated the therapeutic effects of differently fractioned MCR extracts in a 6-hydroxydopamine (OHDA)-induced Parkinson's disease model and neuro-blastoma B65 cells. Ethanol-extracted MCR was fractionated by n-hexane, butanol, and distilled water. Adult Sprague-Dawley rats were treated first with 20 μg of 6-OHDA, followed by three MCR extract fractions (100 or 200 mg·kg) for 14 consecutive days. In the behavioral rotation experiment, the MCR extract-treated groups showed significantly decreased number of net turns compared with the 6-OHDA control group. The three fractions also significantly inhibited the reduction in tyrosine hydroxylase-positive cells in the substantia nigra pars compacta following 6-OHDA neurotoxicity. Western blotting analysis revealed significantly reduced tyrosine hydroxylase expression in the substantia nigra pars compacta in the 6-OHDA-treated group, which was significantly inhibited by the n-hexane or distilled water fractions of MCR. B65 cells were exposed to the extract fractions for 24 h prior to addition of 6-OHDA for 30 min; treatment with n-hexane or distilled water fractions of MCR reduced apoptotic cell death induced by 6-OHDA neurotoxicity and inhibited nitric oxide production and neuronal nitric oxide synthase expression. These results showed that n-hexane- and distilled water-fractioned MCR extracts inhibited 6-OHDA-induced neurotoxicity by suppressing nitric oxide production and neuronal nitric oxide synthase activity, suggesting that MCR extracts could serve as a novel candidate treatment for the patients with Parkinson's disease.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
therapeutic use
;
Antiparkinson Agents
;
pharmacology
;
therapeutic use
;
Cell Death
;
drug effects
;
Cell Line
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
Neurons
;
pathology
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type I
;
biosynthesis
;
Oxidopamine
;
toxicity
;
Paeonia
;
chemistry
;
Parkinsonian Disorders
;
chemically induced
;
drug therapy
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Plants, Medicinal
;
Rats
;
Rats, Sprague-Dawley
;
Substantia Nigra
;
drug effects
;
enzymology
;
Tyrosine 3-Monooxygenase
;
genetics
;
metabolism