1.Nano-size uni-lamellar lipodisq improved in situ auto-phosphorylation analysis of E. coli tyrosine kinase using (19)F nuclear magnetic resonance.
Dong LI ; Juan LI ; Yonglong ZHUANG ; Longhua ZHANG ; Ying XIONG ; Pan SHI ; Changlin TIAN
Protein & Cell 2015;6(3):229-233
Escherichia coli
;
enzymology
;
Fluorine Radioisotopes
;
analysis
;
Lipid Bilayers
;
chemistry
;
Magnetic Resonance Spectroscopy
;
Maleates
;
chemistry
;
Nanoparticles
;
chemistry
;
Phosphorylation
;
Polystyrenes
;
chemistry
;
Protein Conformation
;
Protein-Tyrosine Kinases
;
chemistry
;
metabolism
;
Tyrosine
;
metabolism
2.Characterization of highly active tyrosine ammonia lyase and its application in biosynthesis of p-coumaric acid.
Yawen HUANG ; Xiaolong JIANG ; Wujiu CHEN ; Guimin ZHANG ; Qinhong WANG
Chinese Journal of Biotechnology 2022;38(12):4553-4566
p-coumaric acid is one of the aromatic compounds that are widely used in food, cosmetics and medicine due to its properties of antibacterium, antioxidation and cardiovascular disease prevention. Tyrosine ammonia-lyase (TAL) catalyzes the deamination of tyrosine to p-coumaric acid. However, the lack of highly active and specific tyrosine ammonia lyase limits cost-effective microbial production of p-coumaric acid. In order to improve biosynthesis efficiency of p-coumaric acid, two tyrosine ammonia-lyases, namely Fc-TAL2 derived from Flavobacterium columnare and Fs-TAL derived from Flavobacterium suncheonense, were selected and characterized. The optimum temperature (55 ℃) and pH (9.5) for Fs-TAL and Fc-TAL2 are the same. Under optimal conditions, the specific enzyme activity of Fs-TAL and Fc-TAL2 were 82.47 U/mg and 13.27 U/mg, respectively. Structural simulation and alignment analysis showed that the orientation of the phenolic hydroxyl group of the conserved Y50 residue on the inner lid loop and its distance to the substrate were the main reasons accounting for the higher activity of Fs-TAL than that of Fc-TAL2. The higher activity and specificity of Fs-TAL were further confirmed via whole-cell catalysis using recombinant Escherichia coli, which could convert 10 g/L tyrosine into 6.2 g/L p-coumaric acid with a yield of 67.9%. This study provides alternative tyrosine ammonia-lyases and may facilitate the microbial production of p-coumaric acid and its derivatives.
Ammonia-Lyases/chemistry*
;
Coumaric Acids
;
Escherichia coli/genetics*
;
Tyrosine
3.Salidroside biosynthesis pathway: the initial reaction and glycosylation of tyrosol.
Lanqing MA ; Chunmei LIU ; Hansong YU ; Jixing ZHANG ; Dongyao GAO ; Yanfang LI ; Younian WANG
Chinese Journal of Biotechnology 2012;28(3):282-294
Salidroside, the 8-O-beta-D-glucoside of tyrosol, is a novel adaptogenic drug extracted from the medicinal plant Rhodiola sachalinensis A. Bor. Due to the scarcity of R. sachalinensis and its low yield of salidroside, there is great interest in enhancing the production of salidroside by biotechnological process. Glucosylation of tyrosol is thought to be the final step in salidroside biosynthesis. In our related works, three UGT clones were isolated from the roots and the cultured cells. Our intention was to combine the catalytic specificity of these UGTs in vitro in order to change the level of salidroside in vivo by over-expression of the above UGTs. However, as the aglycone substrate of salidroside, the biosynthetic pathway of tyrosol and its regulation are less well understood. The results of related studies revealed that there are two different possibilities for the tyrosol biosynthetic pathway. One possibility is that tyrosol is produced from a p-coumaric acid precursor, which is derived mainly from phenylalanine. The second possibility is that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. Our previous work demonstrated that over-expression of the endogenous phenylalanine ammonia-lyase gene (PALrs1) and accumulation of p-coumaric acid did not facilitate tyrosol biosynthesis. In contrast, the data presented in our recent work provide in vitro and in vivo evidence that the tyrosine decarboxylase (RsTyrDC) is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. Sachalinensis.
Genetic Engineering
;
Glucosides
;
biosynthesis
;
Glycosylation
;
Phenols
;
Phenylethyl Alcohol
;
analogs & derivatives
;
chemistry
;
metabolism
;
Rhodiola
;
metabolism
;
Tyrosine
;
metabolism
;
Tyrosine Decarboxylase
;
metabolism
4.A new alkaloid from Opuntia vulgaris.
Jian-qin JIANG ; Wen-cai YE ; Yu-hong LIU ; Zhen CHEN ; Zhi-da MIN ; Feng-chang LOU
Acta Pharmaceutica Sinica 2003;38(9):677-679
AIMTo study the chemical constituents of the stems of Opuntia vulgaris Mill(Cactaceae).
METHODSThe compounds of Opuntia vulgaris were isolated by chromatography of Amberlite Dowex 50 and silica gel, and identified by means of UV, IR, MS, 1D and 2D NMR.
RESULTSThree compounds were isolated and identified as: opuntin B(I), 4-hydroxyproline(II) and tyrosine(III).
CONCLUSIONCompound I is a new alkaloid.
Hydroxyproline ; chemistry ; isolation & purification ; Maleimides ; chemistry ; isolation & purification ; Molecular Conformation ; Molecular Structure ; Opuntia ; chemistry ; Phenols ; chemistry ; isolation & purification ; Plants, Medicinal ; chemistry ; Tyrosine ; chemistry ; isolation & purification
5.Minor fibrillar collagens, variable regions alternative splicing, intrinsic disorder, and tyrosine sulfation.
Ming FANG ; Reed JACOB ; Owen MCDOUGAL ; Julia Thom OXFORD
Protein & Cell 2012;3(6):419-433
Minor fibrillar collagen types V and XI, are those less abundant than the fibrillar collagen types I, II and III. The alpha chains share a high degree of similarity with respect to protein sequence in all domains except the variable region. Genomic variation and, in some cases, extensive alternative splicing contribute to the unique sequence characteristics of the variable region. While unique expression patterns in tissues exist, the functions and biological relevance of the variable regions have not been elucidated. In this review, we summarize the existing knowledge about expression patterns and biological functions of the collagen types V and XI alpha chains. Analysis of biochemical similarities among the peptides encoded by each exon of the variable region suggests the potential for a shared function. The alternative splicing, conservation of biochemical characteristics in light of low sequence conservation, and evidence for intrinsic disorder, suggest modulation of binding events between the surface of collagen fibrils and surrounding extracellular molecules as a shared function.
Alternative Splicing
;
genetics
;
Animals
;
Fibrillar Collagens
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Sulfates
;
chemistry
;
metabolism
;
Surface Properties
;
Tyrosine
;
analogs & derivatives
;
chemistry
;
metabolism
6.Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.
Prajwalini MEHERE ; Qian HAN ; Justin A LEMKUL ; Christopher J VAVRICKA ; Howard ROBINSON ; David R BEVAN ; Jianyong LI
Protein & Cell 2010;1(11):1023-1032
Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 Å resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.
Animals
;
Catalytic Domain
;
Crystallography, X-Ray
;
Humans
;
Mice
;
Molecular Dynamics Simulation
;
Tyrosine Transaminase
;
chemistry
7.Research progress of protein tyrosine phosphatase SHP-2.
Journal of Zhejiang University. Medical sciences 2012;41(5):581-585
The Src homology-2 domain-containing phosphatase SHP-2 encoded by PTPN11 is an essential component in several signaling pathways.Different types of mutation in SHP-2 have been confirmed in several types of leukemia and solid tumors. Elucidation of the events underlying Shp2-evoked transformation may provide new insights into the novel targets for anti-cancer therapy.
Humans
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11
;
chemistry
;
metabolism
;
physiology
8.SAR of benzoyl sulfathiazole derivatives as PTP1B inhibitors.
Wen-Wen YIN ; Zheng CHEN ; Yan-Bo TANG ; Fei YE ; Jin-Ying TIAN ; Zhi-Yan XIAO
Acta Pharmaceutica Sinica 2014;49(5):632-638
Protein tyrosine phosphatase (PTP) 1B is a potential target for the treatment of diabetes and obesity. We have previously identified the benzoyl sulfathiazole derivative II as a non-competitive PTP1B inhibitor with in vivo insulin sensitizing effects. Preliminary SAR study on this compound series has been carried out herein, and thirteen new compounds have been designed and synthesized. Among them, compound 10 exhibited potent inhibition against human recombinant PTP1B with the IC50 value of 3.97 micromol x L(-1), and is comparable to that of compound II.
Humans
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
;
Structure-Activity Relationship
;
Sulfathiazoles
;
chemistry
;
pharmacology
9.Synthesis of (2'-bromo-4', 5'-dimethoxy-phenyl)-(2,3-dibromo-4,5-dimethoxy-phenyl)-methane as PTP1B inhibitor.
Jing LI ; Shuju GUO ; Hua SU ; Dayong SHI ; Lijun HAN
China Journal of Chinese Materia Medica 2009;34(12):1516-1519
OBJECTIVETo synthesize (2'-bromo-4',5'-dimethoxy-phenyl)-( 2,3- dibromo-4,5-dimethoxy-phenyl)-methane (6) as protein tyrosine phosphatase 1B (PTP1B) inhibitor.
METHODCompound 6 was synthesized by Friedel-Crafts reaction, bromination and decarbonylation and screened inhibitory activity against PTP1B by the colorimetric assay. The structure of synthetic intermediates and target product were identified on the basis of spectral analysis.
RESULTCompound 6 was synthesized successfully in four steps and evaluated for its PTP1B inhibitory activity, the screening result shown that compound 6 displayed good inhibitory activity against PTP1B.
CONCLUSIONThe target compound 6 was synthesized with the overall yield of 20%, which was a new compound and shown good inhibitory activity against PTP1B (inhibition 40.16% at 5 mg x L(-1)).
Enzyme Inhibitors ; chemical synthesis ; chemistry ; Kinetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 ; antagonists & inhibitors
10.Metabolic engineering study on biosynthesis of 4-hydroxybenzyl alcohol from L-tyrosine in Escherichia coli.
De-Hong XU ; Xiao-Qing BAO ; Xi-Wen WU ; Yu XING ; Chao-Yang TAN
China Journal of Chinese Materia Medica 2022;47(4):906-912
As an important active ingredient in the rare Chinese herb Gastrodiae Rhizoma and also the main precursor for gastrodin biosynthesis, 4-hydroxybenzyl alcohol has multiple pharmacological activities such as anti-inflammation, anti-tumor, and anti-cerebral ischemia. The pharmaceutical products with 4-hydroxybenzyl alcohol as the main component have been increasingly favored. At present, 4-hydroxybenzyl alcohol is mainly obtained by natural extraction and chemical synthesis, both of which, however, exhibit some shortcomings that limit the long-term application of 4-hydroxybenzyl alcohol. The wild and cultivated Gastrodia elata resources are limited. The chemical synthesis requires many steps, long time, and harsh reaction conditions. Besides, the resulting by-products are massive and three reaction wastes are difficult to treat. Therefore, how to artificially prepare 4-hydroxybenzyl alcohol with high yield and purity has become an urgent problem facing the medical researchers. Guided by the theory of microbial metabolic engineering, this study employed the genetic engineering technologies to introduce three genes ThiH, pchF and pchC into Escherichia coli for synthesizing 4-hydroxybenzyl alcohol with L-tyrosine. And the fermentation conditions of engineering strain for producing 4-hydroxybenzyl alcohol in shake flask were also discussed. The experimental results showed that under the conditions of 0.5 mmol·L~(-1) IPTG, 15 ℃ induction temperature, and 40 ℃ transformation temperature, M9 Y medium containing 200 mg·L~(-1) L-tyrosine could be transformed into(69±5)mg·L~(-1) 4-hydroxybenzyl alcohol, which has laid a foundation for producing 4-hydroxybenzyl alcohol economically and efficiently by further expanding the fermentation scale in the future.
Benzyl Alcohols
;
Escherichia coli/metabolism*
;
Gastrodia/chemistry*
;
Metabolic Engineering
;
Tyrosine/metabolism*