1.Research progress on tumor-associated macrophages in colorectal cancer.
Shengnan HUANG ; Fangfang LI ; Dan JIN
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):940-945
Colorectal cancer is a common malignant tumor in gastrointestinal tract. Its onset and development are associated with its own characteristics as well as the tumor microenvironment (TME) in which tumor-associated macrophages (TAMs) are the most abundant immune cells. After being recruited to the tumor site and stimulated by different signals in TME, TAMs can grow into two different subtypes, namely M1 and M2. TAMs are mainly manifested as M1 macrophages in the early stage of colorectal cancer, mediating the immune response to inhibit tumor growth. In the late stage, TAMs mainly grow into M2 macrophages, showing the ability to suppress immunity, stimulate the proliferation of tumor cells and tumor angiogenesis, and promote the invasion and metastasis of tumor cells. It has been found that intervention in TAMs polarization can regulate its relationship with the onset and development of colorectal cancer.
Humans
;
Tumor-Associated Macrophages
;
Macrophages
;
Tumor Microenvironment
;
Colorectal Neoplasms
2.Progressin Tumor-Associated Macrophages in the Treatment of Pancreatic Cancer.
Ke ZHANG ; Ya-Han QIN ; Jie SHEN ; Meng-Yu ZHANG ; Mei-Yu PENG
Acta Academiae Medicinae Sinicae 2023;45(3):471-478
Pancreatic cancer is one of the digestive system tumors with a high degree of malignancy,and most of the patients are diagnosed in advanced stages.Because of limited available therapies,the mortality of this disease remains high.Tumor-associated macrophages(TAM),the main immune cells in the tumor microenvironment,are involved in the regulation of the occurrence and development of pancreatic cancer.Specifically,TAM are involved in the proliferation,invasion,immune escape,and chemoresistance of pancreatic cancer cells,demonstrating potential in the targeted therapy of pancreatic cancer.In this paper,we summarize the TAM-based therapies including consuming TAM,reprogramming TAM,dynamic imaging of TAM with nanoprobes,and regulating the phagocytic ability of TAM for pancreatic cancer,aiming to provide a theoretical basis for developing new therapies for pancreatic cancer.
Humans
;
Tumor-Associated Macrophages
;
Macrophages
;
Pancreatic Neoplasms/pathology*
;
Tumor Microenvironment
4.Prevention and treatment of lung cancer by regulating tumor-associated macrophages with traditional Chinese medicine.
Yun-Feng LIAN ; Hui-Tong YANG ; Ying SUN ; He ZHANG ; Xue MEI ; Long FENG ; Jin-Chan XIA
China Journal of Chinese Materia Medica 2023;48(8):2000-2009
Lung cancer is one of the common malignant tumors in the world, and its incidence and mortality is increasing year by year. Interactions between tumor cells and immune cells in the tumor microenvironment(TME) affect tumor proliferation, infiltration, and metastasis. Tumor-associated macrophages(TAMs) are prominent components of TME, and they have dual regulation effects on malignant progression of lung cancer. The number, activity, and function of M2 macrophages are related to the poor prognosis of lung cancer, and M2 macrophages participate in tumor angiogenesis and immune escape. It has been proved that traditional Chinese medicines(TCMs) and their active ingredients can enhance the antitumor effects, reduce the toxicity of chemotherapy and radiotherapy, and prolong the survival rates of patients with cancer. This paper summarized the role of TAMs in the lung cancer initiation and progression, explored the molecular mechanism of TCM in regulating the recruitment, polarization phenotype, activity, and expression of related factors and proteins of TAMs, and discussed related signal pathways in the prevention and treatment of lung cancer based on the TCM theory of "reinforcing healthy qi and eliminating pathogen". This paper is expected to provide new ideas for the immunotherapy of targeted TAMs.
Humans
;
Tumor-Associated Macrophages/pathology*
;
Medicine, Chinese Traditional
;
Lung Neoplasms/genetics*
;
Macrophages
;
Immunotherapy
;
Tumor Microenvironment
5.Research Progress on the Role of Tumor-Associated Macrophages in Multiple Myeloma --Review.
Ping-Ping ZHANG ; Bing-Zong LI ; Ying-Hua GENG ; Feng ZHANG ; Yan-Li YANG
Journal of Experimental Hematology 2023;31(2):589-592
Bone marrow microenvironment is a highly complex environment surrounding tumor, which plays an important role in the survival, proliferation, drug resistance and migration of multiple myeloma (MM) cells. As an important cellular component in tumor microenvironment, tumor-associated macrophages(TAM) has attracted attention due to its key role in tumor progression and drug resistance. Targeting TAM has shown potential therapeutic value in cancer treatment. In order to clarify the role of macrophages in MM progression, it is necessary to understand the differentiation of TAM and its characteristics of promoting MM. This paper reviews the research progress on how TAM is programmed in MM and the mechanism of TAM promoting tumor development and drug resistance.
Humans
;
Multiple Myeloma/pathology*
;
Tumor-Associated Macrophages
;
Macrophages/pathology*
;
Cell Differentiation
;
Tumor Microenvironment
6.Advances in the Study of Tumor-associated Macrophages in Lung Cancer.
Chinese Journal of Lung Cancer 2022;25(1):34-39
Lung cancer is one of the malignant tumors with the highest morbidity and mortality in China. Therefore, the research on the treatment of lung cancer is also deepening. At present, there are mainly systemic chemotherapy, targeted therapy for positive driver genes, the application of immune checkpoint inhibitors, anti-tumor angiogenesis therapy and the combination of the different treatment methods mentioned above. The use of these regimens has significantly improved the prognosis of most lung cancer patients, but the prognosis of patients with advanced lung cancer remains unsatisfactory. Recently, more and more attention has been paid to the study of tumor microenvironment (TME). TME consists of immune cells, fibroblasts, vascular endothelial cells and other cellular components as well as related cytokines, which is the basis for the survival and development of tumor cells. As an important immune cell of TME, tumor-associated macrophages (TAMs) refer to macrophages infiltrating in tumor tissues, which can promote tumor cell proliferation, induce tumor immune tolerance, stimulate tumor angiogenesis, and increase the invasion and metastasis ability of tumor cells. Therefore, targeting TAMs has become a hot topic in lung cancer immunotherapy. In this review, the sources, phenotypes, mechanisms of TAMs in lung cancer, as well as future therapeutic targets of TAMs were reviewed to provide reference for optimal treatment of lung cancer.
.
Endothelial Cells
;
Humans
;
Immunotherapy
;
Lung Neoplasms/therapy*
;
Tumor Microenvironment
;
Tumor-Associated Macrophages
7.Panax notoginseng saponins prevent colitis-associated colorectal cancer via inhibition IDO1 mediated immune regulation.
Xue-Ming LI ; Ding-Yi YUAN ; Ya-Hui LIU ; Lei ZHU ; Hong-Kun QIN ; Yu-Bing YANG ; Yan LI ; Fang YAN ; Ya-Jing WANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):258-269
Colorectal cancer (CRC) is the third most lethal cancer and leading cause of cancer mortality worldwide. A key driver of CRC development is colon inflammatory responses especially in patients with inflammatory bowl disease (IBD). It has been proved that Panax notoginseng saponins (PNS) have anti-inflammatory, anti-oxidant and anti-tumor effects. The chemopreventive and immunomodulatory functions of PNS on colitis-associated colorectal cancer (CAC) have not been evaluated.This present study was designed to study the potential protective effects of PNS on AOM/DSS-induced CAC mice to explore the possible mechanism of PNS against CAC. Our study showed that PNS significantly alleviated colitis severity and prevented the occurrence of CAC. Functional assays revealed that PNS relieved immunosuppression of Treg cells in the CAC microenvironment by inhibiting the expression of IDO1 mediated directly by signal transducer and activator of transcription 1 (STAT1) rather than phosphorylated STAT1. Ultimately, Rh1, one of the PNS metabolites, exhibited the best inhibitory effect on IDO1 enzyme activity. Our study showed that PNS exerted significant chemopreventive function and immunomodulatory properties on CAC. It could reduce macrophages accumulation and Treg cells differentiation to reshape the immune microenvironment of CAC. These findings provided a promising approach for CAC intervention.
Animals
;
Colitis/drug therapy*
;
Colitis-Associated Neoplasms/drug therapy*
;
Humans
;
Macrophages
;
Mice
;
Panax notoginseng
;
Saponins/therapeutic use*
;
Tumor Microenvironment
8.Interference of P2X4 receptor expression in tumor-associated macrophages suppresses migration and invasion of glioma cells.
Xue Zhi YANG ; Hong SHEN ; Qun LI ; Zi Chao DAI ; Rong Qiang YANG ; Guo Bin HUANG ; Rui CHEN ; Fang WANG ; Jing Ling SONG ; Hai Rong HUA
Journal of Southern Medical University 2022;42(5):658-664
OBJECTIVE:
To investigate the effect of interference of P2X4 receptor expression in tumor-associated macrophages (TAMs) on invasion and migration of glioma cells.
METHODS:
C57BL/6 mouse models bearing gliomas in the caudate nucleus were examined for glioma pathology with HE staining and expressions of Iba-1 and P2X4 receptor with immunofluorescence assay. RAW264.7 cells were induced into TAMs using conditioned medium from GL261 cells, and the changes in mRNA expressions of macrophage polarization-related markers and the mRNA and protein expressions of P2X4 receptor were detected with RT-qPCR and Western blotting. The effect of siRNA-mediated P2X4 interference on IL-1β and IL-18 mRNA and protein expressions in the TAMs was detected with RT-qPCR and Western blotting. GL261 cells were cultured in the conditioned medium from the transfected TAMs, and the invasion and migration abilities of the cells were assessed with Transwell invasion and migration experiment.
RESULTS:
The glioma tissues from the tumor-bearing mice showed a significantly greater number of Iba-1-positive cells, where an obviously increased P2X4 receptor expression was detected (P=0.001), than the brain tissues of the control mice (P < 0.001). The M2 macrophage markers (Arg-1 and IL-10) and M1 macrophage markers (iNOS and TNF-α) were both significantly up-regulated in the TAMs derived from RAW264.7 cells (all P < 0.01), but the up-regulation of the M2 macrophage markers was more prominent; the expression levels of P2X4 receptor protein and mRNA were both increased in the TAMs (P < 0.05). Interference of P2X4 receptor expression significantly lowered the mRNA(P < 0.01)and protein (P < 0.01, P < 0.05)expression levels of IL-1β and IL-18 in the TAMs and obviously inhibited the ability of the TAMs to promote invasion and migration of the glioma cells (P < 0.05).
CONCLUSION
Interference of P2X4 receptor in the TAMs suppresses the migration and invasion of glioma cells possibly by lowering the expressions of IL-1β and IL-18.
Animals
;
Culture Media, Conditioned
;
Glioma
;
Interleukin-18
;
Mice
;
Mice, Inbred C57BL
;
RNA, Messenger
;
Receptors, Purinergic P2X4/metabolism*
;
Tumor-Associated Macrophages
9.Bioinformatics Analysis on Key Genes and Immune Infiltration of Osteosarcoma.
Shuai LI ; Zhen-Zhong ZHENG ; Yu-Peng ZHANG ; Zi-Qun LIU ; Shi-Peng XIAO ; Zheng-Xiao OUYANG ; Bing WANG
Acta Academiae Medicinae Sinicae 2022;44(1):110-117
Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns. Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA). Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix (ECM) structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05). Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma.
Bone Neoplasms/immunology*
;
Computational Biology/methods*
;
Gene Expression Profiling/methods*
;
Humans
;
Osteosarcoma/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Tumor-Associated Macrophages/immunology*
10.Tongxie Yaofang regulates tumor-associated macrophage polarization in colorectal cancer under chronic stress.
Yi YANG ; Yan-E HU ; Yu-Qing HUANG ; Yi-Fang JIANG ; Xi FU ; Feng-Ming YOU
China Journal of Chinese Materia Medica 2023;48(22):6142-6153
This study aims to investigate the intervention effect and mechanism of Tongxie Yaofang in regulating tumor-associated macrophage polarization on colorectal cancer under chronic stress. BALB/C mice were randomized into blank, control, model, mifepristone, and low-, medium-, and high-dose Tongxie Yaofang groups. The other groups except the blank and model groups were subjected to chronic restraint stress and subcutaneous implantation of colon cancer cells for the modeling of colon cancer under stress. Du-ring this period, the body mass and tumor size of each group of mice were recorded. The degree of depression in mice was assessed by behavioral changes. Enzyme-linked immunosorbent assay was employed to determine the levels of cortisol(CORT), 5-hydroxytryptamine(5-HT), norepinephrine(NE), M1-associated inflammatory cytokines [interleukin(IL)-1β, IL-12, and tumor necrosis factor(TNF)-α], and M2-associated inflammatory cytokines(IL-4 and IL-10) in the serum. The tumor growth of mice in each group was regularly monitored by in vivo imaging. The histopathological changes of tumors in each group of mice were observed by hematoxylin-eosin staining. The proportions of CD86 and CD206 in the tumor tissue were detected by flow cytometry and immunofluorescence staining. Western blot was employed to determine the protein levels of Janus kinase(JAK)1, JAK2, JAK3, signal transducer and activator of transcription(STAT)3, and STAT6 in the tumor tissue. The results showed that chronic stress increased the immobility time of mice, elevated the serum levels of CORT, IL-4, and IL-10, lowered the levels of 5-HT, NE, IL-1β, IL-12, and TNF-α, and promoted the growth of subcutaneous tumors. The tumor cells in the tumor tissue grew actively, with obvious atypia and up-regulated protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and down-regulated protein level of CD86. The treatment with Tongxie Yaofang shortened the immobility time of mice, lowered the serum levels of CORT, IL-4, and IL-10, elevated the serum levels of 5-HT, NE, IL-1β, IL-12, and TNF-α, and inhibited the growth of subcutaneous tumors in mice. Moreover, the treatment caused different degrees of necrosis in the tumor tissues, down-regulated the protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and up-regulated the protein level of CD86. In summary, Tongxie Yaofang can promote the transformation of M2 macrophages to M1 macrophages and change the tumor microenvironment under chronic stress to inhibit the development of colorectal cancer, which may be related to the JAK/STAT signaling pathway.
Mice
;
Animals
;
Interleukin-10
;
Tumor-Associated Macrophages/metabolism*
;
Tumor Necrosis Factor-alpha
;
Interleukin-4
;
Serotonin
;
Mice, Inbred BALB C
;
Cytokines/metabolism*
;
Interleukin-12
;
Colonic Neoplasms
;
Colorectal Neoplasms
;
Tumor Microenvironment