1.Effects of ROCK-siRNA transfection on Ang II-induced endothelial cell senescence and endothelial microparticles.
Kai WANG ; Yan WANG ; Tianqi CHEN ; Fang PENG ; Hui ZHOU ; Qin SHI
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):778-783
Objective To investigate the effects of ROCK-siRNA transfection on endothelial cell senescence and endothelial microparticles (EMPs) induced by angiotensin II (Ang II). Methods Human umbilical vein endothelial cells (HUVECs) were treated with Ang II (1.0 μmo/L) to induce cellular senescence models, followed by transfection with ROCK-siRNA. The cells were divided into four groups: control group, model group, negative transfection control group (Ang II combined with NC-siRNA), and ROCK-siRNA transfection group (Ang II combined with ROCK-siRNA). Cellular senescence was assessed by SA-β-Gal staining. EMP levels in cell supernatants and intracellular reactive oxygen species (ROS) levels were assessed using flow cytometry. The expression levels of silenced information regulator 1(SIRT1) and p53 protein in each group were analyzed by Western blotting. Results Following ROCK-siRNA transfection, the number of senescent cells induced by Ang II was significantly reduced, accompanied by decreased CD31+ EMP levels and suppressed intracellular ROS levels. Meanwhile, the expression levels of SIRT1 were up-regulated, while the expression levels of p53 were down-regulated. Conclusion Silencing ROCK expression suppresses EMP release, reduces ROS generation, regulates the expression of SIRT1 and p53, and ultimately attenuates Ang II-induced endothelial cell senescence.
Humans
;
Angiotensin II/pharmacology*
;
Cellular Senescence/genetics*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
RNA, Small Interfering/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Sirtuin 1/genetics*
;
Transfection
;
Tumor Suppressor Protein p53/genetics*
;
Cell-Derived Microparticles/drug effects*
;
rho-Associated Kinases/metabolism*
;
Endothelial Cells/metabolism*
;
Cells, Cultured
2.Hydroxysafflor Yellow A Ameliorates the Replicative Senescence of Human Umbilical Cord Mesenchymal Stem Cells by Suppressing Oxidative Stress.
Si-Yun WANG ; Qi ZHU ; Chun-Xia TAN ; Fang LU ; Tao LU
Journal of Experimental Hematology 2025;33(5):1507-1515
OBJECTIVE:
To investigate the effects and mechanisms of hydroxysafflor yellow A (HSYA) on replicative senescence in human umbilical cord mesenchymal stem cells (hUC-MSCs).
METHODS:
hUC-MSCs were cultured to construct a replicative senescence model through continuous amplification in vitro. Cells at passage 2 served as the control group, while cells at passage 10 were designated as the senescence group. The senescent cells were cultured in a culture medium containing HSYA. Cell viability was detected by the CCK-8 assay, and cell confluence was analyzed using the Incucyte S3 live-cell analysis system. The optimal concentration and time point were determined and utilized for subsequent experiments. Senescent cells were pretreated with 0.01 mg/ml HSYA, and the proportion of senescence-associated β-galactosidase (SA-β-gal) positive cells was detected to assess the senescence state. The relative telomere length was detected by qPCR. Reactive oxygen species (ROS) levels were measured using the fluorescent probe DCFH-DA. Mitochondrial membrane potential was assessed by JC-1 staining. The expression of p53, p16, p21, OCT4, and SOX2 genes was detected by qPCR. The expression of p16, p53, OCT4, and SOX2 proteins was analyzed by Western blot.
RESULTS:
HSYA significantly decreased the SA-β-gal positive staining rate, inhibited telomere attrition, reduced the ROS accumulation, increased mitochondrial membrane potential in senescent cells. Additionally, HSYA downregulated the expression of p53 and p16, and upregulated the expression of OCT4. HSYA decreased p16 protein level and increased OCT4 and SOX2 protein levels.
CONCLUSION
HSYA may ameliorate replicative senescence in hUC-MSCs by modulating the p53 and p16 signaling pathways and suppressing oxidative stress.
Humans
;
Mesenchymal Stem Cells/drug effects*
;
Cellular Senescence/drug effects*
;
Chalcone/pharmacology*
;
Oxidative Stress/drug effects*
;
Quinones/pharmacology*
;
Umbilical Cord/cytology*
;
Reactive Oxygen Species/metabolism*
;
Cells, Cultured
;
Cyclin-Dependent Kinase Inhibitor p16/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Membrane Potential, Mitochondrial
;
Cell Proliferation
3.Mechanism of Hedyotis diffusa-Scutellaria barbata D. Don for treatment of primary liver cancer: analysis with network pharmacology, molecular docking and in vitro validation.
Meng XU ; Lina CHEN ; Jinyu WU ; Lili LIU ; Mei SHI ; Hao ZHOU ; Guoliang ZHANG
Journal of Southern Medical University 2025;45(1):80-89
OBJECTIVES:
To investigate the active ingredients in Hedyotis diffusa-Scutellaria barbata D. Don and the main biological processes and signaling pathways mediating their inhibitory effect on primary hepatocellular carcinoma (HCC).
METHODS:
The core intersecting genes of HCC and the two drugs were screened from TCMSP, Uniport, Genecards, and String databases using Cytoscape software, and GO and KEGG enrichment analyses of the intersecting genes were conducted. Molecular docking between the active ingredients of the drugs and the core genes was carried out using Pubcham, RCSB and Autoduckto to identify the active ingredients with the highest binding energy, whose inhibitory effect on HepG2 cells was verifies using CCK-8 assay, flow cytometry and Western blotting.
RESULTS:
TP53 and ESR1 were identified as the core genes of HCC and the two drugs. GO and KEGG analyses showed that the two genes were mainly involved in regulation of apoptotic signaling pathway, cell population proliferation, methane raft, and protein kinase activity, and participated in the signaling pathways of apoptosis, proteoglycans in cancer, PI3K Akt signaling pathway, and hepatitis B. Molecular docking studies showed that the active ingredients of the drugs could be docked with TP53 and ESR1 genes under natural conditions, and ursolic acid had the highest binding energy to ESR1 (-4.98 kcal/mol). The results of CCK-8 assay, flow cytometry and Western blotting all demonstrated significant inhibitory effect of ursolic acid on HepG2 cells.
CONCLUSIONS
The inhibitory effect of Hedyotis diffusa-scutellariae barbatae on HCC is mediated by multiple active ingredients in the two drugs.
Humans
;
Molecular Docking Simulation
;
Liver Neoplasms/drug therapy*
;
Hep G2 Cells
;
Network Pharmacology
;
Carcinoma, Hepatocellular/drug therapy*
;
Hedyotis/chemistry*
;
Signal Transduction/drug effects*
;
Cell Proliferation/drug effects*
;
Tumor Suppressor Protein p53/metabolism*
;
Apoptosis/drug effects*
;
Estrogen Receptor alpha/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
4.Quercetin inhibits proliferation and migration of clear cell renal cell carcinoma cells by regulating TP53 gene.
Junjie GAO ; Kai YE ; Jing WU
Journal of Southern Medical University 2025;45(2):313-321
OBJECTIVES:
To identify potential molecular targets of quercetin in the treatment of clear cell renal carcinoma (ccRCC).
METHODS:
The therapeutic targets of quercetin were screened from multiple databases by network pharmacology analysis, and the targets significantly correlated with ccRCC were screened from 4907 plasma proteins using a Mendelian randomization method. The drug-disease network model was constructed to screen the potential key targets. The functions of these targets were evaluated via bioinformatics analysis, and the screened targets were verified in cultured ccRCC cells.
RESULTS:
Network pharmacology analysis combined with Mendelian randomization identified TP53 (OR=3.325, 95% CI: 1.805-6.124, P=0.0001), ARF4 (OR=0.173, 95% CI: 0.065-0.456, P=0.0003), and DPP4 (OR=0.463, 95% CI: 0.302-0.711, P=0.0004) as the core targets in quercetin treatment of ccRCC. Bioinformatics analysis showed that TP53 was highly expressed in ccRCC, and patients with high TP53 expressions had worse survival outcomes. Molecular docking studies showed that the binding energy between quercetin and TP53 was -5.83 kcal/mol. In cultured 786-O cells, CCK-8 assay and wound healing assay showed that treatment with quercetin significantly inhibited cell proliferation and migration. Quercetin treatment also strongly suppressed the expression of TP53 at both the mRNA and protein levels in 786-O cells as shown by RT-qPCR and Western blotting.
CONCLUSIONS
TP53 may be the key target of quercetin in the treatment of ccRCC, which sheds light on potential molecular mechanism that mediate the therapeutic effect of quercetin.
Humans
;
Quercetin/pharmacology*
;
Carcinoma, Renal Cell/genetics*
;
Cell Proliferation/drug effects*
;
Kidney Neoplasms/genetics*
;
Cell Movement/drug effects*
;
Tumor Suppressor Protein p53/metabolism*
;
Cell Line, Tumor
;
Computational Biology
5.Shuangshu Decoction inhibits growth of gastric cancer cell xenografts by promoting cell ferroptosis via the P53/SLC7A11/GPX4 axis.
Xinyuan CHEN ; Chengting WU ; Ruidi LI ; Xueqin PAN ; Yaodan ZHANG ; Junyu TAO ; Caizhi LIN
Journal of Southern Medical University 2025;45(7):1363-1371
OBJECTIVES:
To explore the mechanism of Shuangshu Decoction (SSD) for inhibiting growth of gastric cancer xenografts in nude mice.
METHODS:
Network pharmacology analysis was conducted to identify the common targets of SSD and gastric cancer cell ferroptosis, and bioinformatics analysis and molecular docking were used to validate the core targets. In the cell experiment, AGS cells were treated with SSD-medicated serum, Fer-1 (a ferroptosis inhibitor), or both, and the changes in cell viability, ferroptosis markers (ROS, Fe2+ and GSH), expressions of P53, SLC7A11 and GPX4, and mitochondrial morphology were examined. In a nude mouse model bearing gastric cancer xenografts, the effects of gavage with SSD, intraperitoneal injection of Fer-1, or their combination on tumor volume/weight, histopathology, and expressions of P53, SLC7A11 and GPX4 levels were evaluated.
RESULTS:
The active components in SSD (quercetin and wogonin) showed strong binding affinities to P53. In AGS cells, SSD treatment dose-dependently inhibited cell proliferation, increased ROS and Fe2+ levels, upregulated P53 expression, and downregulated the expressions of SLC7A11 and GPX4, but these effects were effectively attenuated by Fer-1 treatment. SSD also induced mitochondrial shrinkage and increased the membrane density, which were alleviated by Fer-1. In the tumor-bearing mouse models, gavage with SSD significantly reduced tumor size and weight, caused tumor cell necrosis, upregulated P53 and downregulated SLC7A11 and GPX4 expression in the tumor tissue, and these effects were obviously mitigated by Fer-1 treatment.
CONCLUSIONS
SSD inhibits gastric cancer growth in nude mice by inducing cell ferroptosis via the P53/SLC7A11/GPX4 axis.
Ferroptosis/drug effects*
;
Animals
;
Stomach Neoplasms/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Mice, Nude
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Amino Acid Transport System y+/metabolism*
;
Mice
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Xenograft Model Antitumor Assays
6.Dysregulation of Iron Homeostasis Mediated by FTH Increases Ferroptosis Sensitivity in TP53-Mutant Glioblastoma.
Xuejie HUAN ; Jiangang LI ; Zhaobin CHU ; Hongliang ZHANG ; Lei CHENG ; Peng LUN ; Xixun DU ; Xi CHEN ; Qian JIAO ; Hong JIANG
Neuroscience Bulletin 2025;41(4):569-582
Iron metabolism is a critical factor in tumorigenesis and development. Although TP53 mutations are prevalent in glioblastoma (GBM), the mechanisms by which TP53 regulates iron metabolism remain elusive. We reveal an imbalance iron homeostasis in GBM via TCGA database analysis. TP53 mutations disrupted iron homeostasis in GBM, characterized by elevated total iron levels and reduced ferritin (FTH). The gain-of-function effect triggered by TP53 mutations upregulates itchy E3 ubiquitin-protein ligase (ITCH) protein expression in astrocytes, leading to FTH degradation and an increase in free iron levels. TP53-mut astrocytes were more tolerant to the high iron environment induced by exogenous ferric ammonium citrate (FAC), but the increase in intracellular free iron made them more sensitive to Erastin-induced ferroptosis. Interestingly, we found that Erastin combined with FAC treatment significantly increased ferroptosis. These findings provide new insights for drug development and therapeutic modalities for GBM patients with TP53 mutations from iron metabolism perspectives.
Ferroptosis/drug effects*
;
Humans
;
Iron/metabolism*
;
Glioblastoma/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
Homeostasis/physiology*
;
Ferritins/metabolism*
;
Brain Neoplasms/genetics*
;
Mutation
;
Astrocytes/drug effects*
;
Cell Line, Tumor
;
Piperazines/pharmacology*
;
Quaternary Ammonium Compounds/pharmacology*
;
Ferric Compounds
7.NUMB endocytic adaptor protein (NUMB) mediates the anti-hepatic fibrosis effect of artesunate (ART) by inducing senescence in hepatic stellate cells (HSCs).
Yangling QIU ; Yujia LI ; Mengran LI ; Yingqian WANG ; Min SHEN ; Jiangjuan SHAO ; Feng ZHANG ; Xuefen XU ; Feixia WANG ; Zili ZHANG ; Shizhong ZHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):322-333
Developing and identifying effective medications and targets for treating hepatic fibrosis is an urgent priority. Our previous research demonstrated the efficacy of artesunate (ART) in alleviating liver fibrosis by eliminating activated hepatic stellate cells (HSCs). However, the underlying mechanism remains unclear despite these findings. Notably, endocytic adaptor protein (NUMB) has significant implications for treating hepatic diseases, but current research primarily focuses on liver regeneration and hepatocellular carcinoma. The precise function of NUMB in liver fibrosis, particularly its ability to regulate HSCs, requires further investigation. This study aims to elucidate the role of NUMB in the anti-hepatic fibrosis action of ART in HSCs. We observed that the expression level of NUMB significantly decreased in activated HSCs compared to quiescent HSCs, exhibiting a negative correlation with the progression of liver fibrosis. Additionally, ART induced senescence in activated HSCs through the NUMB/P53 tumor suppressor (P53) axis. We identified NUMB as a crucial regulator of senescence in activated HSCs and as a mediator of ART in determining cell fate. This research examines the specific target of ART in eliminating activated HSCs, providing both theoretical and experimental evidence for the treatment of liver fibrosis.
Hepatic Stellate Cells/cytology*
;
Liver Cirrhosis/genetics*
;
Artesunate/pharmacology*
;
Cellular Senescence/drug effects*
;
Membrane Proteins/genetics*
;
Animals
;
Humans
;
Nerve Tissue Proteins/genetics*
;
Tumor Suppressor Protein p53/genetics*
;
Male
;
Mice
8.Ustusolate E and 11α-Hydroxy-Ustusolate E induce apoptosis in cancer cell lines by regulating the PI3K/AKT/mTOR and p-53 pathways.
Mewlude REHMUTULLA ; Sitian ZHANG ; Jie YIN ; Jianzheng HUANG ; Yang XIAO ; Zhengxi HU ; Qingyi TONG ; Yonghui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):346-353
Cancer represents a significant disease that profoundly impacts human health and longevity. Projections indicate a 47% increase in the global cancer burden by 2040 compared to 2020, accompanied by a further rise in the associated economic burden. Consequently, there is an urgent need to discover and develop new alternative drugs to mitigate the global impact of cancer. Natural products (NPs) play a crucial role in the identification and development of anticancer therapeutics. This study identified ustusolate E (UE) and its analog 11α-hydroxy-ustusolate E (HUE) from strain Aspergilluscalidoustus TJ403-EL05, and examined their antitumor activities and mechanisms of action. The findings demonstrate that both compounds significantly inhibited the proliferation and colony formation of AGS (human gastric cancer cells) and 786-O (human renal clear cell carcinoma cells), induced irreversible DNA damage, blocked the cell cycle at the G2/M phase, and further induced apoptosis in tumor cells. To the best of the authors' knowledge, this is the first report on the anticancer effects of UE and HUE and their underlying mechanisms. The present study suggests that HUE and UE could serve as lead compounds for the development of novel anticancer drugs.
Humans
;
Apoptosis/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cell Line, Tumor
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Tumor Suppressor Protein p53/genetics*
;
Cell Proliferation/drug effects*
;
Antineoplastic Agents/pharmacology*
;
Sesquiterpenes/pharmacology*
;
Aspergillus/chemistry*
9.Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway.
Pan ZHAI ; Xiao-Hu OUYANG ; Meng-Ling YANG ; Lan LIN ; Jun-Yi LI ; Yi-Ming LI ; Xiang CHENG ; Rui ZHU ; De-Sheng HU
Journal of Integrative Medicine 2024;22(6):652-664
OBJECTIVE:
Myocardial ischemia/reperfusion injury (MIRI) is an obstacle to the success of cardiac reperfusion therapy. This study explores whether luteolin can mitigate MIRI by regulating the p53 signaling pathway.
METHODS:
Model mice were subjected to a temporary surgical ligation of the left anterior descending coronary artery, and administered luteolin. The myocardial infarct size, myocardial enzyme levels, and cardiac function were measured. Latent targets and signaling pathways were screened using network pharmacology and molecular docking. Then, proteins related to the p53 signaling pathway, apoptosis and oxidative stress were measured. Hypoxia/reoxygenation (HR)-incubated HL1 cells were used to validate the effects of luteolin in vitro. In addition, a p53 agonist and an inhibitor were used to investigate the mechanism.
RESULTS:
Luteolin reduced the myocardial infarcted size and myocardial enzymes, and restored cardiac function in MIRI mice. Network pharmacology identified p53 as a hub target. The bioinformatic analyses showed that luteolin had anti-apoptotic and anti-oxidative properties. Additionally, luteolin halted the activation of p53, and prevented both apoptosis and oxidative stress in myocardial tissue in vivo. Furthermore, luteolin inhibited cell apoptosis, JC-1 monomer formation, and reactive oxygen species elevation in HR-incubated HL1 cells in vitro. Finally, the p53 agonist NSC319726 downregulated the protective attributes of luteolin in the MIRI mouse model, and both luteolin and the p53 inhibitor pifithrin-α demonstrated a similar therapeutic effect in the MIRI mice.
CONCLUSION
Luteolin effectively treats MIRI and may ameliorate myocardial damage by regulating apoptosis and oxidative stress through its targeting of the p53 signaling pathway. Please cite this article as: Zhai P, Ouyang XH, Yang ML, Lin L, Li JY, Li YM, Cheng X, Zhu R, Hu DS. Luteolin protects against myocardial ischemia/reperfusion injury by reducing oxidative stress and apoptosis through the p53 pathway. J Integr Med. 2024; 22(6): 652-664.
Luteolin/pharmacology*
;
Animals
;
Myocardial Reperfusion Injury/metabolism*
;
Oxidative Stress/drug effects*
;
Tumor Suppressor Protein p53/genetics*
;
Apoptosis/drug effects*
;
Mice
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Myocardial Infarction/prevention & control*
;
Reactive Oxygen Species/metabolism*
10.Mechanism of Astragali Radix-Curcumae Rhizoma in treating gastric cancer based on network pharmacology and experimental verification.
Xi-Ying TAN ; Jing TAO ; Yu ZHANG ; Ru-Xin GU
China Journal of Chinese Materia Medica 2023;48(18):5056-5067
This study aims to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in the treatment of gastric cancer based on network pharmacology. Further, the SGC7901 cell model of gastric cancer was employed to validate the efficacy and key targets of the herb pair. Firstly, the CCK-8 assay was employed to evaluate the direct effect of HQEZ on the proliferation of gastric cancer SGC7901 cells. Then, network pharmacology methods were employed to investigate the active ingredients, key targets, and key signaling pathways involved in the treatment of gastric cancer with HQEZ. The results showed that HQEZ contained 18 potential active ingredients, such as quercetin, naringenin, and curcumin. The results of gene ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment suggested that the main targets of HQEZ in treating gastric cancer were involved in the regulation of protein serine/threonine kinase activity, activation of mitogen-activated protein kinase(MAPK) activity, cysteine-type endopeptidase activity, and negative regulation of protein serine/threonine kinase activity. The hypoxia-inducible factor-1(HIF-1) signaling pathway, ATP-binding cassette(ABC) transporters, cytochrome P450-mediated metabolism of xenobiotics, p53 signaling pathway, and cell apoptosis were key signaling pathways of HQEZ in treating gastric cancer. The cell experiments demonstrated that HQEZ significantly downregulated the expression of ATP-binding cassette subfamily B member 1(ABCB1), epidermal growth factor receptor(EGFR), phosphorylated serine/threonine kinase(p-AKT), hypoxia inducible factor 1 subunit alpha(HIF1A), B-cell lymphoma 2(BCL2), breast cancer susceptibility protein 1(BRCA1), DNA polymerase theta(POLH), ribonucleotide reductase M1(RRM1), and excision repair cross-complementation group 1(ERCC1), and upregulated the expression of tumor protein P53(TP53) and cysteinyl aspartate-specific proteinase(CAPS3). Finally, a multivariate COX regression model was adopted to study the relationship between gene expression and clinical information data of gastric cancer patients in the TCGA database, which demonstrated that the key targets of HQEZ were associated with the poor prognosis in gastric cancer patients. Further feature selection using the LASSO algorithm showed that EGFR, HIF1A, TP53, POLH, RRM1, and ERCC1 were closely associated with the survival of gastric can-cer patients. In conclusion, HQEZ regulates the expression of genes involved in DNA repair, survival, and apoptosis in gastric cancer cells via multiple targets and pathways, assisting the treatment of gastric cancer.
Humans
;
Stomach Neoplasms/genetics*
;
Tumor Suppressor Protein p53
;
Network Pharmacology
;
ErbB Receptors
;
Protein Serine-Threonine Kinases
;
Serine
;
Adenosine Triphosphate
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/pharmacology*

Result Analysis
Print
Save
E-mail