1.miR-148b inhibits M2 polarization of LPS-stimulated macrophages by targeting DcR3.
Li Yuan YANG ; Xiao Li LOU ; Yue WANG ; Yan Qiang HOU
Chinese Journal of Preventive Medicine 2023;57(8):1231-1237
Objective: To investigate the effect of microRNA (miR-148b) targeting decoy receptor 3 (DcR3) on macrophage polarization in sepsis. Methods: Experimental study. From December 2019 to December 2022, serum microRNA expression was detected in 3 patients with sepsis and 3 healthy controls in the clinical laboratory of Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Phorbol 12-myristate 13-acetate (PMA) was used to induce the differentiation of human acute monocytic leukemia cells THP-1 into macrophages, and then lipopolysaccharide (LPS) was added to stimulate the establishment of a sepsis cell model, and the expression changes of miR-148b and DcR3 were detected by RT-PCR and Western blot. Overexpression of DcR3 was used to detect the expression levels of TNF-α, CD163 and IL-10 in macrophages stimulated by LPS (100 ng/ml). Overexpression of miR-148b was used to observe the changes of molecular markers of macrophage polarization. The targeting regulation effect of miR-148b on DcR3 was determined by dual-luciferase reporter assay. t test was used to analyze whether there were statistical differences among the groups. Results: The expression of miR-148b was down-regulated (P<0.05) and the expression of DcR3 was up-regulated (P<0.01) in THP-1 macrophages stimulated by LPS. Overexpression of DcR3 inhibited the expression of TNF-α (P<0.05) and promoted the expression of CD163 (P<0.01) and IL-10 (P<0.01). When miR-148b mimics was added, the opposite effect was observed. The dual-luciferase reporter assay confirmed that miR-148b targets and binds to DcR3, inhibiting its transcription and expression. The results of flow cytometry showed that DcR3 could reverse the promoting effect of miR-148b on the CD86/CD163 ratio of macrophages (P<0.05). Conclusion: miR-148b inhibits the expression of DcR3, thereby inhibiting M2 polarization in LPS-stimulated macrophage cells.
Humans
;
Interleukin-10
;
Lipopolysaccharides/pharmacology*
;
Macrophages
;
MicroRNAs/genetics*
;
Receptors, Tumor Necrosis Factor, Member 6b/metabolism*
;
Tumor Necrosis Factor-alpha
2.miR-148b inhibits M2 polarization of LPS-stimulated macrophages by targeting DcR3.
Li Yuan YANG ; Xiao Li LOU ; Yue WANG ; Yan Qiang HOU
Chinese Journal of Preventive Medicine 2023;57(8):1231-1237
Objective: To investigate the effect of microRNA (miR-148b) targeting decoy receptor 3 (DcR3) on macrophage polarization in sepsis. Methods: Experimental study. From December 2019 to December 2022, serum microRNA expression was detected in 3 patients with sepsis and 3 healthy controls in the clinical laboratory of Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine. Phorbol 12-myristate 13-acetate (PMA) was used to induce the differentiation of human acute monocytic leukemia cells THP-1 into macrophages, and then lipopolysaccharide (LPS) was added to stimulate the establishment of a sepsis cell model, and the expression changes of miR-148b and DcR3 were detected by RT-PCR and Western blot. Overexpression of DcR3 was used to detect the expression levels of TNF-α, CD163 and IL-10 in macrophages stimulated by LPS (100 ng/ml). Overexpression of miR-148b was used to observe the changes of molecular markers of macrophage polarization. The targeting regulation effect of miR-148b on DcR3 was determined by dual-luciferase reporter assay. t test was used to analyze whether there were statistical differences among the groups. Results: The expression of miR-148b was down-regulated (P<0.05) and the expression of DcR3 was up-regulated (P<0.01) in THP-1 macrophages stimulated by LPS. Overexpression of DcR3 inhibited the expression of TNF-α (P<0.05) and promoted the expression of CD163 (P<0.01) and IL-10 (P<0.01). When miR-148b mimics was added, the opposite effect was observed. The dual-luciferase reporter assay confirmed that miR-148b targets and binds to DcR3, inhibiting its transcription and expression. The results of flow cytometry showed that DcR3 could reverse the promoting effect of miR-148b on the CD86/CD163 ratio of macrophages (P<0.05). Conclusion: miR-148b inhibits the expression of DcR3, thereby inhibiting M2 polarization in LPS-stimulated macrophage cells.
Humans
;
Interleukin-10
;
Lipopolysaccharides/pharmacology*
;
Macrophages
;
MicroRNAs/genetics*
;
Receptors, Tumor Necrosis Factor, Member 6b/metabolism*
;
Tumor Necrosis Factor-alpha
4.Therapeutic mechanism of emodin for treatment of rheumatoid arthritis: a network pharmacology-based analysis.
Chun Hao CAO ; Li ZENG ; Xiao Feng RONG
Journal of Southern Medical University 2022;42(6):913-921
OBJECTIVE:
To investigate the therapeutic mechanism of emodin in the treatment of rheumatoid arthritis (RA) using a network pharmacology-based method and validate this mechanism in a fibroblast-like synovial cell line.
METHODS:
The PubChem, Targetnet, SwissTargetPrediction, Genecards, OMIM, and DisGeNET databases were searched to obtain emodin targets and RA-related genes. A protein-protein interaction (PPI) network was constructed, and GO and KEGG pathway enrichment analyses were carried out to analyze the intersection genes. AutoDock4.2.6 software was used to simulate molecular docking between emodin and its candidate targets. In a cultured fibroblast-like synovial cell line (MH7A), the effects of different concentrations of emodin on proliferation of tumor necrosis factor-α (TNF-α)-induced cells were investigated using CCK-8 assay, cell scratch experiment and flow cytometry; the changes in the expressions of nuclear factor-κB (NF-κB) pathway proteins were detected using Western blotting, and the mRNA expressions of the hub genes were examined with RT-qPCR.
RESULTS:
We identified 32 intersection genes of emodin and RA, and the key targets including CAPS3, ESR1, and MAPK14 involved mainly the NF-κB signaling pathway. Cell scratch experiment and flow cytometry demonstrated a strong inhibitory effect of emodin on MH7A cell proliferation. Treatment with TNF-α significantly increased the cellular expressions of the NF-κB pathway proteins, which were obviously lowered by treatment with 80 μmol/L emodin. The results of RT-qPCR showed that TNF-α treatment obviously up-regulated the expressions of the hub genes COX2 and P38MAPK, and emodin treatment significantly down-regulated the expressions of MAPK and PTGS2 and up-regulated the expression of CASP3.
CONCLUSION
The therapeutic effect of emodin on RA is mediated mainly through regulation of cell proliferation, apoptosis, and the NF-κB pathway.
Arthritis, Rheumatoid/pathology*
;
Emodin/pharmacology*
;
Humans
;
Molecular Docking Simulation
;
NF-kappa B/metabolism*
;
Network Pharmacology
;
Tumor Necrosis Factor-alpha/pharmacology*
5.Effects of low-level laser on the expression of interleukin-6, tumor necrosis factor‑α, osteoprotegerin, and receptor activator of nuclear factor-κB ligand in human periodontal ligament cells.
Meng TANG ; Zhan-Qin CUI ; Yangyang WANG ; Zengguo CHEN ; Wenjing LI ; Cuiping ZHANG
West China Journal of Stomatology 2023;41(5):521-532
OBJECTIVES:
This study aims to determine the effects of low-level laser (LLL) on the expression of interleukin-6 (IL-6), tumor necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor-κB ligand (RANKL) in human periodontal ligament cells (HPDLCs) stimulated by high glucose; and identify the molecular mechanism of LLL therapy in the regulation of periodontal inflammation and bone remodeling during orthodontic treatment in diabetic patients.
METHODS:
HPDLCs were cultured in vitro to simulate orthodontic after loading and irradiated with LLL therapy. The cultured cells were randomly divided into four groups: low glucose Dulbecco's modification of Eagle's medium (DMEM)+stress stimulation (group A), high glucose DMEM+stress stimulation (group B), hypoglycemic DMEM+LLL therapy+stress stimulation (group C), and hyperglycemic DMEM+LLL therapy+stress stimulation (group D). Groups C and D were further divided into C1 and D1 (energy density: 3.75 J/cm2) and C2 and D2 (energy density: 5.625 J/cm2). Cells in groups A, B, C, and D were irradiated by LLL before irradiation. At 0, 12, 24, 48, and 72 h, the supernatants of the cell cultures were extracted at regular intervals, and the protein expression levels of IL-6, TNF-α, OPG, and RANKL were detected by enzyme-linked immunosorbent assay.
RESULTS:
1) The levels of IL-6 and TNF-α secreted by HPDLCs increased gradually with time under static pressure stimulation. After 12 h, the levels of IL-6 and TNF-α secreted by HPDLCs in group A were significantly higher than those in groups B, C1, and C2 (P<0.05), which in group B were significantly higher than those in groups D1, and D2 (P<0.01). 2) The OPG protein concentration showed an upward trend before 24 h and a downward trend thereafter. The RANKL protein concentration increased, whereas the OPG/RANKL ratio decreased with time. Significant differen-ces in OPG, RANKL, and OPG/RANKL ratio were found among group A and groups B, C1, C2 as well as group B and groups D1, D2 (P<0.05).
CONCLUSIONS
1) In the high glucose+stress stimulation environment, the concentrations of IL-6 and TNF-α secreted by HPDLCs increased with time, the expression of OPG decreased, the expression of RANKL increased, and the ratio of OPG/RANKL decreased. As such, high glucose environment can promote bone resorption. After LLL therapy, the levels of IL-6 and TNF-α decreased, indicating that LLL therapy could antagonize the increase in the levels of inflammatory factors induced by high glucose environment and upregulate the expression of OPG in human HPDLCs, downregulation of RANKL expression in HPDLCs resulted in the upregulation of the ratio of OPG/RANKL and reversed the imbalance of bone metabolism induced by high glucose levels. 2) The decrease in inflammatory factors and the regulation of bone metabolism in HPDLCs were enhanced with increasing laser energy density within 3.75-5.625 J/cm2. Hence, the ability of LLL therapy to modulate bone remodeling increases with increasing dose.
Humans
;
Osteoprotegerin
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/pharmacology*
;
RANK Ligand/pharmacology*
;
Periodontal Ligament/metabolism*
;
Lasers
;
Glucose/pharmacology*
6.Screening of TNF-alpha antagonist peptides from a random peptide library displayed with Escherichia coli flagellar.
Chao LI ; Yan-Rong ZHOU ; Du-Sheng CHENG ; Pei-Tang HUANG
Chinese Journal of Biotechnology 2002;18(5):556-560
Tumor necrosis factor(TNF-alpha) plays an improtant role in the process of anti-infection and anti-cancer. It can both protect and make damage to the host. In order to find new way of inhibiting its host-damaging activity, An E. coli flagella displayed random peptide library was constructed and TNF-alpha antagonist peptides were screened using the peptide library. After 5 rounds of panning and DNA sequencing, six peptide sequences were obtained. Two of them(TBP2, TBP3) have the same sequence frame of V--N-WG. After primary comparation of TNF-alpha binding ability, four peptides were synthesised and purified with RP-HPLC. The activity of inhibiting TNF-alpha was detected with L929 cell and MTT method. The data show that TBP2 and TBP3 can inhibit 90% of TNF-alpha activity when TNF-alpha gives about 30% cell toxicity on L929. The two sequences have not been reported.
Escherichia coli
;
genetics
;
Peptide Library
;
Peptides
;
isolation & purification
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
antagonists & inhibitors
8.Mechanism of inhibitory effect of catalpol on TNF-α induced HAECs cell damage.
Can-Yao XU ; Yu-Kun ZHANG ; Hui-Jun SUN ; Hong ZHANG
China Journal of Chinese Materia Medica 2019;44(4):796-802
Catalpol is an iridoid glycoside extracted from the root of Rehmannia glutinosa. It has been reported to have antioxidant stress effects. Adenosine 5' monophosphate-activated protein kinase( AMPK) plays an important role in inhibiting oxidative stress. This study was designed to investigate the protective effects of catalpol on TNF-α-exposed human aorta epithelial cells( HAECs) via inhibit oxidative stress,and the relationship between catalpol and AMPK was detected by RNA interference technique. Levels of superoxide dismutase( SOD),malonaldehyde( MDA),glutathione( GSH) and lactate dehydrogenase( LDH) were measured with a colorimetric assay kit. The level of ROS was measured with FACS calibur. Western blot was employed to detect the protein expression of AMPK,phosphorylated-AMPK and NOX4. Finally,RNA interference technique was used to investigate the role of AMPK in catalpol-induced protective effects. TNF-α treatment decreased the expression of phosphorylated-AMPK protein level,however,catalpol could reverse the decreased phosphorylated-AMPK level. Catalpol could inhibit NOX4 protein expression and decrease ROS overproduction. After using AMPK siRNA that effects of catalpol on ROS overproduction and NOX4 protein expression inhibition were attenuated. The above results suggest that catalpol inhibits oxidative stress in TNF-α-exposed HAECs by activating AMPK.
Humans
;
Iridoid Glucosides
;
pharmacology
;
Iridoids
;
Oxidative Stress
;
Reactive Oxygen Species
;
Tumor Necrosis Factor-alpha
9.Changes of tumor necrosis factor-alpha and the effects of ulinastatin injection during cardiopulmonary cerebral resuscitation.
Wei, WANG ; Weijia, HUANG ; Shouquan, CHEN ; Zhangping, LI ; Wantie, WANG ; Mingshan, WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(3):269-71
The changes of tumor necrosis factor-alpha (TNF-alpha) and brain ultrastructure during cardiopulmonary resuscitation and the effects of ulinastation injection were observed, and the mechanism was investigated. Twenty-four adult healthy Sprague-Dawley rats were randomly divided into control group (8 rats), resuscitation group (8 rats) and ulinastatin (UTI) group (8 rats). Rats in control group underwent tracheotomy without clipping the trachea to induce circulatory and respiratory standstill. Rats in resuscitation and ulinastatin group were subjected to the procedure of establishing the model of cardiopulmonary cerebral resuscitation (CPCR). Rats in ulinastatin group were given with UTI 104 U/kg once after CPCR. In the control group, the plasma was collected immediate, 30 min, 2 h, 4 h, and 6 h after tracheotomy. In resuscitation group and UTI group, plasma was collected immediate after tracheotomy, 30 min, 2 h, 4 h and 6 h after successful resuscitation. The plasma levels of TNF-alpha were determined by radioimmunoassay (RIA). At the end of the experiment, 2 rats were randomly selected from each group and were decapitated. The cortex of the brain was taken out immediately to observe the ultrastructure changes. In control group, there were no significant differences in the level of TNF-alpha among different time points (P>0.05). In resuscitation group, the level of TNF-alpha was increased obviously after resuscitation (P<0.01) and reached its peak 2 h later after resuscitation. An increasing trend of TNF-alpha showed in UTI group. There were no differences in TNF-alpha among each sample taken after successful resuscitation and that after tracheotomy. The utrastructure of brains showed the injury in UTI group was ameliorated as compared with that in resuscitation group. In early period of CPCR, TNF-alpha was expressed rapidly and kept increasing. It indicated that TNF-alpha might take part in the tissue injury after CPCR. The administration of UTI during CACR could depress TNF-alpha and ameliorate brain injury. By regulating the expression of damaging mediator, UTI might provide a protective effect on the tissue injury after CPCR.
Brain/*ultrastructure
;
*Cardiopulmonary Resuscitation
;
Glycoproteins/*pharmacology
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/*metabolism
10.Coactivator p300-induced H3K27 acetylation mediates lipopolysaccharide-induced inflammatory mediator synthesis.
Ke HU ; Xiang Yu CAO ; Yu Xian LI ; Ling Li LIU ; Yue Fu CHEN ; Li Jun CHEN ; Min Jiang HUANG ; Bi Feng TAN ; Hui Ming YIN
Journal of Southern Medical University 2022;42(3):321-329
OBJECTIVE:
To investigate the role of acetylated modification induced by coactivator p300 in lipopolysaccharide (LPS)- induced inflammatory mediator synthesis and its molecular mechanism.
METHODS:
Agilent SurePrint G3 Mouse Gene Expression V2 microarray chip and Western blotting were used to screen the molecules whose expression levels in mouse macrophages (RAW246.7) were correlated with the stimulation intensity of LPS. Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (chip-qPCR) were used to verify the binding of the molecules to the promoters of IL-6 and TNF-α genes. The effects of transfection of RAW246.7 cells with overexpression or interfering plasmids on IL-6 and TNF-α synthesis were evaluated with ELISA, and the binding level of the target molecules and acetylation level of H3K27 in the promoter region of IL-6 and TNF-α genes were analyzed by chromatin immunoprecipitation sequencing technique (chip-seq).
RESULTS:
Gene microarray chip data and Western blotting both confirmed a strong correlation of p300 expression with the stimulation intensity of LPS. Immunocoprecipitation confirmed the binding between p300 and c-myb. The results of EMSA demonstrated that c-myb (P < 0.05), but not p300, could directly bind to the promoter region of IL-6 and TNF-α genes; p300 could bind to the promoters only in the presence of c-myb (P < 0.05). The expressions of p65, p300 and c-myb did not show interactions. Both p300 overexpression and LPS stimulation could increase the level of promoter-binding p300 and H3K27 acetylation level, thus promoting p65 binding and inflammatory gene transcription; such effects were obviously suppressed by interference of c-myb expression (P < 0.05). Interference of p65 resulted in inhibition of p65 binding to the promoters and gene transcription (P < 0.05) without affecting p300 binding or H3K27 acetylation level.
CONCLUSION
LPS can stimulate the synthesis of p300, whose binding to the promoter region of inflammatory genes via c-myb facilitates the cohesion of p65 by inducing H3K27 acetylation, thus promoting the expression of the inflammatory genes.
Acetylation
;
Animals
;
Inflammation Mediators
;
Interleukin-6/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Mice
;
Tumor Necrosis Factor-alpha/metabolism*