1.Progress in omics research and preclinical models of gallbladder cancer.
Ming Jiang YANG ; Ying WU ; Dong Xi XIANG ; Ying Bin LIU
Chinese Journal of Surgery 2023;61(3):260-264
Gallbladder cancer(GBC)is one common type of bile tract cancers with poor prognosis. This review summarizes the recent development of studies about somatic mutation, molecular subtype, microenvironment heterogeneity, organoid, orthotopic model, patient-derived xenograft and clinical translation on GBC in aspects of genomic,transcriptome,single cell omics and clinical translation. We expect this review will provide new ideas on dissecting molecular mechanisms underlying the development and emerging chemoresistance of GBC following therapy and promote GBC precision medicine.
Humans
;
Gallbladder Neoplasms/genetics*
;
Prognosis
;
Tumor Microenvironment
2.Analysis on tumor immune microenvironment and construction of a prognosis model for immune-related skin cutaneous melanoma.
Meng WU ; Zheng WANG ; Jianglin ZHANG
Journal of Central South University(Medical Sciences) 2023;48(5):671-681
OBJECTIVES:
Malignant melanoma is a highly malignant and heterogeneous skin cancer. Although immunotherapy has improved survival rates, the inhibitory effect of tumor microenvironment has weakened its efficacy. To improve survival and treatment strategies, we need to develop immune-related prognostic models. Based on the analysis of the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Sequence Read Archive (SRA) database, this study aims to establish an immune-related prognosis prediction model, and to evaluate the tumor immune microenvironment by risk score to guide immunotherapy.
METHODS:
Skin cutaneous melanoma (SKCM) transcriptome sequencing data and corresponding clinical information were obtained from the TCGA database, differentially expressed genes were analyzed, and prognostic models were developed using univariate Cox regression, the LASSO method, and stepwise regression. Differentially expressed genes in prognostic models confirmed by real-time reverse transcription PCR (real-time RT-PCR) and Western blotting. Survival analysis was performed by using the Kaplan-Meier method, and the effect of the model was evaluated by time-dependent receiver operating characteristic curve as well as multivariate Cox regression, and the prognostic model was validated by 2 GEO melanoma datasets. Furthermore, correlations between risk score and immune cell infiltration, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) score, immune checkpoint mRNA expression levels, tumor immune cycle, or tumor immune micro-environmental pathways were analyzed. Finally, we performed association analysis for risk score and the efficacy of immunotherapy.
RESULTS:
We identified 4 genes that were differentially expressed in TCGA-SKCM datasets, which were mainly associated with the tumor immune microenvironment. A prognostic model was also established based on 4 genes. Among 4 genes, the mRNA and protein levels of killer cell lectin like receptor D1 (KLRD1), leukemia inhibitory factor (LIF), and cellular retinoic acid binding protein 2 (CRABP2) genes in melanoma tissues differed significantly from those in normal skin (all P<0.01). The prognostic model was a good predictor of prognosis for patients with SKCM. The patients with high-risk scores had significantly shorter overall survival than those with low-risk scores, and consistent results were achieved in the training cohort and multiple validation cohorts (P<0.001). The risk score was strongly associated with immune cell infiltration, ESTIMATE score, immune checkpoint mRNA expression levels, tumor immune cycle, and tumor immune microenvironmental pathways (P<0.001). The correlation analysis showed that patients with the high-risk scores were in an inhibitory immune microenvironment based on the prognostic model (P<0.01).
CONCLUSIONS
The immune-related SKCM prognostic model constructed in this study can effectively predict the prognosis of SKCM patients. Considering its close correlation to the tumor immune microenvironment, the model has some reference value for clinical immunotherapy of SKCM.
Humans
;
Melanoma/genetics*
;
Skin Neoplasms/genetics*
;
Tumor Microenvironment
;
Prognosis
3.Research progress on neutrophil extracellular traps in tumor.
Journal of Zhejiang University. Medical sciences 2020;49(1):107-112
Neutrophil extracellular traps(NET)is neutrophil-derived extracellular fiber web-like structure, composed of DNA scaffold studded with various active proteins. In addition to its bactericidal effect, NET is closely related to various diseases including immune disease, thrombosis and tumor. Recently, lots of researches have shown that NET is highly expressed in a variety of tumors, tumor cells and microenvironment can promote NET formation, whereas NET participates in tumor progression as well, and is closely related to tumor proliferation, metastasis and thrombosis, which provides new clinical thinking in tumor diagnosis as well as treatment indeed. This review will focus on the research progress of NET and tumor, meanwhile make a prospect for its clinical application value.
Extracellular Traps
;
genetics
;
Humans
;
Neoplasms
;
physiopathology
;
Neutrophils
;
pathology
;
Tumor Microenvironment
4.Roles of highly expressed bone-specific genes in bone metastatic prostate cancer PC3 cells: Advances in studies.
Shi-Yi ZHOU ; Dong WANG ; Ji-Chun SHAO ; Yao-Dong YOU
National Journal of Andrology 2021;27(10):927-933
Prostate cancer (PCa) is a maligmancy with high morbidity and mortality. Bone metastasis is the main cause of short survival time and difficulties in the treatment and prevention of PCa. Previous findings of our team showed 155 bone-specific genes highly expressed in bone metastatic PC3 cells, which is considered to be the key to their adaptation to the bone micro-environment, proliferation and formation of metastatic tumor, and extensively exists in cancer metastasis in multiple systems. This review summarizes the published literature on the highly expressed bone-specific genes, focusing on the roles and values of these genes in the metastasis, progression, clinical diagnosis, treatment and prognosis of PCa, offering a prospect of the direction and targets in the studies of PCa bone metastasis so as to enrich the bone metastatic theories and clinical treatment principles of this disease in the future.
Humans
;
Male
;
PC-3 Cells
;
Prostatic Neoplasms/genetics*
;
Tumor Microenvironment
5.Roles of exosome-derived non-coding RNA in tumor micro-environment and its clinical application.
Qinyi DOU ; Jiazheng WANG ; Yingshuo YANG ; Wei ZHUO
Journal of Zhejiang University. Medical sciences 2023;52(4):429-438
Tumor-derived exosomes play an important role in the tumor micro-environment. The exosome-derived non-coding RNAs are transmitted in the tumor microenvironment in three ways, communication between tumor cells, normal cells affecting tumor cells, and tumor cells affecting normal cells. Through these three ways, exosomal non-coding RNAs are involved in the regulation of tumor progression, affecting tumor angiogenesis, tumor invasiveness, drug resistance, stemness, tumor metabolic repro-gramming and immune escape, resulting in dual roles in promoting or inhibiting tumor development. Exosomes have a membranous structure and their contents are resistant to degradation by extracellular proteases and remain highly stable in body fluids, thus exosome-derived non-coding RNAs are expected to serve as diagnostic and prognostic indicators for a variety of cancers. In addition, exosomes can be used to deliver non-coding RNAs for targeted therapy, or to knock down or modify tumor-promoting non-coding RNAs for tumor therapy. This article reviews the function and communication mechanism of exosomal non-coding RNAs in the tumor microenvironment, including their pathways of action, effects, potential values for tumor biomarkers and treatment targets. This article also points out the issues that need to be further studied in order to promote the progress of extracellular non-coding RNAs in cancer research and their application in tumor diagnosis and treatment.
Humans
;
Exosomes
;
Neoplasms/genetics*
;
Biomarkers, Tumor
;
Body Fluids
;
RNA, Untranslated/genetics*
;
Tumor Microenvironment
6.MiR-4772 modulates tumor immune microenvironment by regulating immune- related genes in ovarian cancer.
Ai Yue ZHAO ; Yun Xia SU ; De Qiang FU
Journal of Southern Medical University 2022;42(11):1638-1645
OBJECTIVE:
To explore the regulatory role of miR-4772 in the formation of tumor immune microenvironment in ovarian cancer.
METHODS:
The optimal cutoff level of PD-L1 expression was calculated based on data from 294 ovarian cancer patients in the TCGA database. The differentially expressed genes (DEGs) between high and low PD-L1 expression groups were screened, and the important DEGs were identified by correlation analysis. WGCNA analysis was performed to select the weighted genes and PD-L1-related miRNAs, from which the hub genes were obtained by intersection analysis. ssGSEA analysis was used to evaluate the effect of PD-L1 and miR-4772 expressions on the tumor immune microenvironment in ovarian cancer. KEGG analysis was used to identify the involved signal pathways, and the interactions between the hub genes were mapped by protein-protein interaction (PPI) analysis. Survival analysis was carried out to identify the survival-related hub genes, and the results were validated using the data of 399 patients with ovarian cancer from GEO database and the sequencing results of SKOV3 cells transfected with miR-4772 mimics or inhibitor.
RESULTS:
According the optimal cutoff level of PD-L1 expression of 1.31582 (90th quantile), the patients were divided into high- and low-PD-L1 expression groups. A total of 840 DEGs were identified, including 549 significantly up-regulated genes and 291 down-regulated genes. Among them, 20 important DEGs were found to closely correlate with miR-4772 expression, and WGCNA analysis identified 48 weighted genes significantly correlated with miR-4772. Twelve genes were identified as both key DEGs and weighted genes and were treated as the hub genes. ssGSEA analysis showed that both the patients with high PD-L1 expressions and those with high miR-4772 expressions showed more active immune infiltration and functional activity. The 12 hub genes were involved mainly in immune-related signaling pathways, and PPI analysis suggested significant interactions among the hub genes. The two hub genes CD96 and TBX21 showed close correlation with the survival of ovarian cancer patients. The sequencing results of SKOV3 cells transfected with miR-4772 mimics or inhibitor showed that the changes in miR-4772 expression level caused obvious changes in the expressions of the 12 hub genes and PD-L1.
CONCLUSION
MiR-4772 plays a regulatory role in the formation of tumor immune microenvironment in ovarian cancer by regulating 12 hub genes.
Humans
;
Female
;
B7-H1 Antigen/genetics*
;
Tumor Microenvironment
;
Ovarian Neoplasms/genetics*
;
MicroRNAs/genetics*
;
Databases, Factual
7.Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions.
Jia ZHONG ; Hua BAI ; Zhijie WANG ; Jianchun DUAN ; Wei ZHUANG ; Di WANG ; Rui WAN ; Jiachen XU ; Kailun FEI ; Zixiao MA ; Xue ZHANG ; Jie WANG
Frontiers of Medicine 2023;17(1):18-42
With the improved understanding of driver mutations in non-small cell lung cancer (NSCLC), expanding the targeted therapeutic options improved the survival and safety. However, responses to these agents are commonly temporary and incomplete. Moreover, even patients with the same oncogenic driver gene can respond diversely to the same agent. Furthermore, the therapeutic role of immune-checkpoint inhibitors (ICIs) in oncogene-driven NSCLC remains unclear. Therefore, this review aimed to classify the management of NSCLC with driver mutations based on the gene subtype, concomitant mutation, and dynamic alternation. Then, we provide an overview of the resistant mechanism of target therapy occurring in targeted alternations ("target-dependent resistance") and in the parallel and downstream pathways ("target-independent resistance"). Thirdly, we discuss the effectiveness of ICIs for NSCLC with driver mutations and the combined therapeutic approaches that might reverse the immunosuppressive tumor immune microenvironment. Finally, we listed the emerging treatment strategies for the new oncogenic alternations, and proposed the perspective of NSCLC with driver mutations. This review will guide clinicians to design tailored treatments for NSCLC with driver mutations.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Mutation
;
Tumor Microenvironment/genetics*
8.Prevention and treatment of lung cancer by regulating tumor-associated macrophages with traditional Chinese medicine.
Yun-Feng LIAN ; Hui-Tong YANG ; Ying SUN ; He ZHANG ; Xue MEI ; Long FENG ; Jin-Chan XIA
China Journal of Chinese Materia Medica 2023;48(8):2000-2009
Lung cancer is one of the common malignant tumors in the world, and its incidence and mortality is increasing year by year. Interactions between tumor cells and immune cells in the tumor microenvironment(TME) affect tumor proliferation, infiltration, and metastasis. Tumor-associated macrophages(TAMs) are prominent components of TME, and they have dual regulation effects on malignant progression of lung cancer. The number, activity, and function of M2 macrophages are related to the poor prognosis of lung cancer, and M2 macrophages participate in tumor angiogenesis and immune escape. It has been proved that traditional Chinese medicines(TCMs) and their active ingredients can enhance the antitumor effects, reduce the toxicity of chemotherapy and radiotherapy, and prolong the survival rates of patients with cancer. This paper summarized the role of TAMs in the lung cancer initiation and progression, explored the molecular mechanism of TCM in regulating the recruitment, polarization phenotype, activity, and expression of related factors and proteins of TAMs, and discussed related signal pathways in the prevention and treatment of lung cancer based on the TCM theory of "reinforcing healthy qi and eliminating pathogen". This paper is expected to provide new ideas for the immunotherapy of targeted TAMs.
Humans
;
Tumor-Associated Macrophages/pathology*
;
Medicine, Chinese Traditional
;
Lung Neoplasms/genetics*
;
Macrophages
;
Immunotherapy
;
Tumor Microenvironment
9.Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma.
Feng TANG ; Zhiyong PAN ; Yi WANG ; Tian LAN ; Mengyue WANG ; Fengping LI ; Wei QUAN ; Zhenyuan LIU ; Zefen WANG ; Zhiqiang LI
Neuroscience Bulletin 2022;38(9):1069-1084
Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the tricarboxylic acid cycle (TAC). The high mutation frequency of the IDH gene plays a complicated role in gliomas. In addition to affecting gliomas directly, mutations in IDH can also alter their immune microenvironment and can change immune-cell function in direct and indirect ways. IDH mutations mediate immune-cell infiltration and function by modulating immune-checkpoint gene expression and chemokine secretion. In addition, IDH mutation-derived D2-hydroxyglutarate can be absorbed by surrounding immune cells, also affecting their functioning. In this review, we summarize current knowledge about the effects of IDH mutations as well as other gene mutations on the immune microenvironment of gliomas. We also describe recent preclinical and clinical data related to IDH-mutant inhibitors for the treatment of gliomas. Finally, we discuss different types of immunotherapy and the immunotherapeutic potential of IDH mutations in gliomas.
Brain Neoplasms/therapy*
;
Glioma/therapy*
;
Humans
;
Immunotherapy
;
Isocitrate Dehydrogenase/genetics*
;
Mutation/genetics*
;
Tumor Microenvironment
10.Establishment and Validation of Immune Risk Score for Predicting Survival of Patients with Acute Myeloid Leukemia.
Fang HU ; Yun WANG ; Yu ZHANG ; Yun ZENG ; Shun-Qing WANG ; Xue-Yi PAN ; Tong-Hua YANG ; Qi-Fa LIU ; Yang LIANG
Journal of Experimental Hematology 2022;30(2):327-333
OBJECTIVE:
To establish an immune gene prognostic model of acute myeloid leukemia (AML) and explore its correlation with immune cells in bone marrow microenvironment.
METHODS:
Gene expression profile and clinical data of TCGA-AML were downloaded from TCGA database. Immune genes were screened by LASSO analysis to construct prognosis prediction model, and prediction accuracy of the model was quantified by receiver operating characteristic curve and area under the curve. Survival analysis was performed by Log-rank test. Enriched pathways in the different immune risk subtypes were evaluated from train cohort. The relationship between immune prediction model and bone marrow immune microenvironment was verified by flow cytometry in the real world.
RESULTS:
Patients with low-risk score of immune gene model had better prognosis than those with high-risk score. Multivariate analysis showed that the immune gene risk model was an independent prognostic factor. The risk ratio for AML patients in the training concentration was HR=24.594 (95%CI: 6.180-97.878), and the AUC for 1-year, 3-year, and 5-year overall survival rate was 0.811, 0.815, and 0.837, respectively. In addition, enrichment analysis of differential gene sets indicated activation of immune-related pathways such as cytokines and chemokines as well as autoimmune disease-related pathways. At the same time, real world data showed that patients with high immune risk had lower numbers of CD8+T cells and B lymphocytes compared with low immune risk patients.
CONCLUSION
We constructed a stable prognostic model for AML, which can not only predict the prognosis of AML, but also reveal the dysregulation of immune microenvironment.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Prognosis
;
ROC Curve
;
Risk Factors
;
Transcriptome
;
Tumor Microenvironment/genetics*