1.Patients' Views about Undergraduate Clinical Training: Targeting Improved Clinical Clerkship Training on the Ward.
Nobutaro BAN ; Tsukasa TSUDA ; Yoshikazu TASAKA ; Ryuki KASAI ; Hiroki SASAKI ; Mitsuru WAKUNAMI ; Noriaki OCHI ; Yasuhiro YAMAMOTO ; Katsuhiro ITO ; Tatsuki KATSUMURA
Medical Education 1994;25(1):35-42
2.Introducing the Objective Structured Clinical Examination to Evaluate Students' Interviewing and Physical Examination Skills.
Nobutaro BAN ; Tsukasa TSUDA ; Yoshikazu TASAKA ; Hiroki SASAKI ; Ryuki KASSAI ; Mitsuru WAKUNAMI ; Satoru AZUMA ; Kazunori Aoi ; Noriaki OCHI ; Yasuhiro YAMAMOTO ; Katsuhiro ITO ; E. K. Kachur
Medical Education 1994;25(6):327-335
3.Analysis of copy number abnormality (CNA) and loss of heterozygosity (LOH) in the whole genome using single nucleotide polymorphism (SNP) genotyping arrays in tongue squamous cell carcinoma.
Kuroiwa TSUKASA ; Yamamoto NOBUHARU ; Onda TAKESHI ; Bessyo HIROKI ; Yakushiji TAKASHI ; Katakura AKIRA ; Takano NOBUO ; Shibahara TAKAHIKO
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2011;37(6):550-555
Chromosomal loss of heterozygosity (LOH) is a common mechanism for the inactivation of tumor suppressor genes in human epithelial cancers. LOH patterns can be generated through allelotyping using polymorphic microsatellite markers; however, owing to the limited number of available microsatellite markers and the requirement for large amounts of DNA, only a modest number of microsatellite markers can be screened. Hybridization to single nucleotide polymorphism (SNP) arrays using Affymetarix GeneChip Mapping 10 K 2.0 Array is an efficient method to detect genome-wide cancer LOH. We determined the presence of LOH in oral SCCs using these arrays. DNA was extracted from tissue samples obtained from 10 patients with tongue SCCs who presented at the Hospital of Tokyo Dental College. We examined the presence of LOH in 3 of the 10 patients using these arrays. At the locus that had LOH, we examined the presence of LOH using microsatellite markers. LOH analysis using Affymetarix GeneChip Mapping 10K Array showed LOH in all patients at the 1q31.1. The LOH regions were detected and demarcated by the copy number 1 with the series of three SNP probes. LOH analysis of 1q31.1 using microsatellite markers (D1S1189, D1S2151, D1S2595) showed LOH in all 10 patients (100). Our data may suggest that a putative tumor suppressor gene is located at the 1q31.1 region. Inactivation of such a gene may play a role in tongue tumorigenesis.
Carcinoma, Squamous Cell
;
Cell Transformation, Neoplastic
;
Chimera
;
Coat Protein Complex I
;
DNA
;
Genes, Tumor Suppressor
;
Genes, vif
;
Genome
;
Humans
;
Loss of Heterozygosity
;
Microsatellite Repeats
;
Polymorphism, Single Nucleotide
;
Tokyo
;
Tongue
4.Detection of porcine reproductive and respiratory syndrome virus in oral fluid from naturally infected pigs in a breeding herd.
Nguyen Thi TRANG ; Takuya HIRAI ; Tsukasa YAMAMOTO ; Mari MATSUDA ; Naoko OKUMURA ; Nguyen Thi Huong GIANG ; Nguyen Thi LAN ; Ryoji YAMAGUCHI
Journal of Veterinary Science 2014;15(3):361-367
The objectives of the present study were to evaluate the anatomic localization of porcine reproductive and respiratory syndrome virus (PRRSV) in naturally infected pigs and to determine whether oral fluid could be used to detect the virus in infected animals. Two sows, seven 2-month-old grower pigs, and 70 6-month-old gilts were included in this study. PRRSV in sera and oral fluid were identified by nested reverse transcription PCR (nRT-PCR) while lung, tonsil, and tissue associated with oral cavity were subjected to nRT-PCR, immunohistochemistry, and in situ hybridization. In sows, PRRSV was identified in oral fluid and tonsils. PRRSV was also detected in oral fluid, tonsils, salivary glands, oral mucosa, and lungs of all seven grower pigs. However, viremia was observed in only two grower pigs. Double staining revealed that PRRSV was distributed in macrophages within and adjacent to the tonsillar crypt epithelium. In gilts, the North American type PRRSV field strain was detected 3 to 8 weeks after introducing these animals onto the farm. These results confirm previous findings that PRRSV primarily replicates in tonsils and is then shed into oral fluid. Therefore, oral fluid sampling may be effective for the surveillance of PRRSV in breeding herds.
Animals
;
Female
;
In Situ Hybridization/veterinary
;
Lung/virology
;
Male
;
Palatine Tonsil/virology
;
Polymerase Chain Reaction/veterinary
;
Porcine Reproductive and Respiratory Syndrome/*virology
;
Porcine respiratory and reproductive syndrome virus/*physiology
;
Saliva/*virology
;
Salivary Glands/virology
;
Swine/virology
;
Virus Replication/physiology