1.Expression of Vitreoscilla hemoglobin and nitrilase in the yeast Pichia pastoris.
Qing-Lu WANG ; Rui ZHANG ; Wan-Chao NI ; Yu-Quan CHEN ; San-Dui GUO
Chinese Journal of Biotechnology 2004;20(5):730-735
The expression of the vgb gene in vivo could improve the fermentation density and then contribute the extracellular secretion of the product of bxn gene. Constructed the recombination plasmid pPIC9K-vgbbxn and transformed into Pichia pastoris GS115. The results of PCR and SDS-PAGE indicate that the vgb gene and bxn gene had integrated into the genome of Pichia pastoris GS115 and expressed in efficient level. Also, the protein activity of their products had been verified respectively. Shake flask fermentation experiments showed that the presence of VHb in yeast Pichia pastoris efficiently enhanced cell growth and secretive expression of bxn gene under hypoxic habitats.
Aminohydrolases
;
genetics
;
metabolism
;
Bacterial Proteins
;
genetics
;
physiology
;
Electrophoresis, Polyacrylamide Gel
;
Pichia
;
genetics
;
Plasmids
;
Polymerase Chain Reaction
;
Recombinant Proteins
;
biosynthesis
;
Truncated Hemoglobins
;
genetics
;
physiology
2.Enhanced ergosterol production by recombinant Saccharomyces cerevisiae 1190 harboring Vitreoscilla hemoglobin gene (vgb).
Nan FAN ; Yan LI ; Quan ZHOU ; Guo-Qiang CHEN
Chinese Journal of Biotechnology 2004;20(3):441-444
Ergosterol is a principal sterol of fungi. It is a raw material for production of vitamin D2, hydrocortisone, progesterone and brassinolide. Synthesis of ergosterol requires molecular oxygen, and low oxygen tensions was reported to dramatically reduce ergosterol concentration. Vitreoscilla Hemoglobin Gene (vgb), a homodimeric hemoglobin gene from Gram-negative obligate aerobic bacterium Vitreoscilla, enables a higher specific cellular oxygen uptake rate, it also improves the oxygen transportation. In this study, recombinant plasmid pVgb-kanMX4 containing Vitreoscilla Hemoglobin Gene (vgb) and geneticin (G418) was constructed and transformed into Saccharomyces cerevisiae 1190 for enhanced ergosterol production. With sufficient oxygen supply, the ergosterol contents of recombinant and wild type strains grown in shake flasks were 1.07% and 0.573%, respectively. Under oxygen limitation condition, ergosterol contents in recombinant and wild type strains were reduced to 0.39% and 0.25%, respectively. In a 30 hours fermentation study conducted in a 5 liter fermentor, 15.1 g/L Cell Dry Weight (CDW) containing 1.38% ergosterol was obtained from growth of the recombinant strains; Only 14.8 g/L CDW containing 0.9% ergosterol was produced by the wild type strain. These results demonstrated that vgb played a role in enhancing ergosterol production.
Bacterial Proteins
;
biosynthesis
;
genetics
;
physiology
;
Cloning, Molecular
;
Ergosterol
;
biosynthesis
;
genetics
;
Fermentation
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
Truncated Hemoglobins
;
biosynthesis
;
genetics
;
physiology
3.Expression of Vitreoscilla hemoglobin improves recombinant lipase production in Pichia pastoris.
Xiaofeng WANG ; Yongchuan SUN ; Xuguang SHEN ; Feng KE ; Li XU ; Yun LIU ; Yunjun YAN
Chinese Journal of Biotechnology 2011;27(12):1755-1764
Yarrowia lipolytica lipase Lip2 (YlLip2) is an important industrial enzyme with many potential applications. To alleviate the dissolved oxygen (DO) limitation and improve YlLip2 production during high-cell density fermentation, the YlLip2 gene lip2 and Vitreoscilla hemoglobin (VHb) gene vgb were co-expressed in Pichiapastoris under the control of AOX1 and PsADH2 promoter, respectively. The PsADH2 promoter from Pichia stipitis could be activated under oxygen limitation. The SDS-PAGE and CO-difference spectrum analysis indicated that VHb and YlLip2 had successfully co-expressed in recombinant strains. Compared with the control cells (VHb-, GS115/9Klip2), the expression levels of YlLip2 in VHb-expressing cells (VHb+, GS115/9Klip2-pZPVT) under oxygen limitation were improved 25% in shake-flask culture and 83% in a 10 L fermentor. Moreover, the VHb+ cells displayed higher biomass than VHb- cells at lower DO levels in a 10 L fermentor. In this study, we also achieved a VHb-expressing clone harboring multicopy lip2 gene (GS115/9Klip2-pZPVTlip2 49#), which showed the maximum lipolytic activity of 33 900 U/mL in a 10 L fermentor under lower DO conditions. Therefore, it can be seen that expression of VHb with PsADH2 promoter in P. pastoris combined with increasing copies of lip2 gene is an effective strategy to improve YlLip2 production.
Bacterial Proteins
;
biosynthesis
;
genetics
;
Fermentation
;
Fungal Proteins
;
biosynthesis
;
genetics
;
Lipase
;
biosynthesis
;
genetics
;
Oxygen
;
analysis
;
pharmacology
;
Pichia
;
metabolism
;
Protein Engineering
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Truncated Hemoglobins
;
biosynthesis
;
genetics
4.Regulation of Vitreoscilla hemoglobin on biosynthesis of astragaloside IV.
Zi-Yan WANG ; Zhi-Bi HU ; Zheng-Tao WANG
Acta Pharmaceutica Sinica 2011;46(3):355-360
In the present study, the regulation of Vitreoscilla hemoglobin (VHb) on astragaloside IV biosynthesis was investigated. An intermediate expression vector consisting of the CaMV35S promoter fused to the vgb and nopaline synthase terminator was transferred into Astragalus membranaceus via Agrobacterium rhizogenes. The transgenic hairy roots were confirmed by PCR amplification and Southern blot hybridization. The expression of vgb in transgenic hairy roots was confirmed by RT-PCR. After 15 days cultivation, the dry weight and growth rate of transgenic hairy roots were higher than that of the non-transgenic hairy root. ELSD-HPLC analysis showed that astragaloside IV content of transgenic hairy roots was 5 to 6 times of non-transgenic hairy root control and 10 to 12 times of Radix Astragali from Shanxi Province. These results suggested that the expression of vgb promoted the growth of transgenic hairy roots, and increased the content of astragaloside IV.
Astragalus membranaceus
;
genetics
;
growth & development
;
metabolism
;
Bacterial Proteins
;
genetics
;
metabolism
;
Plant Roots
;
growth & development
;
metabolism
;
Plants, Genetically Modified
;
genetics
;
growth & development
;
metabolism
;
Plants, Medicinal
;
genetics
;
growth & development
;
metabolism
;
Saponins
;
analysis
;
biosynthesis
;
Triterpenes
;
analysis
;
Truncated Hemoglobins
;
genetics
;
metabolism
;
Vitreoscilla
;
genetics
5.Fusion expression of D-amino acid oxidase from Trignoposis variabilis with maltose binding protein and Vitreoscilla hemoglobin.
Huimin YU ; Xianfeng MA ; Hui LUO ; Cheng WEN ; Zhongyao SHEN
Chinese Journal of Biotechnology 2008;24(6):1004-1009
D-amino acid oxidase (DAAO) is one of important industrial enzymes. To increase the solubility and activity of the TvDAAO from Trignoposis variabilis expressed in recombinant Escherichia coli (E. coli), a maltose binding protein (MBP) and Vitreoscilla hemoglobin (VHb) was introduced to fuse with N-terminal of the TvDAAO, respectively. Fusion protein of MBP-TvDAAO was constitutively expressed in JM105/pMKC-DAAO and inductively expressed in JM105/pMKL-DAAO. With respect to the control strain of BL21 (DE3)/pET-DAAO without MBP fusion, the constitutive fusion expression obtained 28% of soluble protein with 3.7 folds of solubility improvement. As for the inductive fusion expression, corresponding results changed to 17% and 1.8 folds, respectively. However, the DAAO activity significantly decreased in the MBP-fusing expression. Fusion protein of VHb-TvDAAO was constructed and inductively expressed in BL21 (DE3)/pET-VDAAO. Its DAAO activity highly reached 3.24 u/mL in flask culture, about 90% increase in contrast to the control without VHb.
Bacterial Proteins
;
biosynthesis
;
genetics
;
Carrier Proteins
;
biosynthesis
;
genetics
;
D-Amino-Acid Oxidase
;
biosynthesis
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Maltose-Binding Proteins
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Truncated Hemoglobins
;
biosynthesis
;
genetics
;
Yeasts
;
enzymology
;
genetics