1.Genes and their functional mechanisms in the pathogenesis of muscular dystrophy.
Acta Academiae Medicinae Sinicae 2005;27(3):394-400
Muscular dystrophy (MD), a group of inherited disorders characterized by progressive skeletal muscle wasting and weakness, can be classified into several groups according to Mendelian inheritance patterns and clinical features. Many genes related to MD have been identified and cloned by genetic linkage analysis and positional cloning strategy. Our understanding of the molecular mechanisms giving rise to muscular dystrophy have made a progress by the functional analysis of proteins encoded by candidate genes for MD. This article reviews genes and their functional mechanisms in the pathogenesis of muscular dystrophy.
Calpain
;
genetics
;
Dystrophin
;
genetics
;
Humans
;
Lamin Type A
;
genetics
;
Muscle Proteins
;
genetics
;
Muscular Dystrophies
;
etiology
;
genetics
;
Myostatin
;
Transforming Growth Factor beta
;
genetics
;
Tripartite Motif Proteins
;
Ubiquitin-Protein Ligases
;
genetics
2.TRIM25 inhibits HBV replication by promoting HBx degradation and the RIG-I-mediated pgRNA recognition.
Hongxiao SONG ; Qingfei XIAO ; Fengchao XU ; Qi WEI ; Fei WANG ; Guangyun TAN
Chinese Medical Journal 2023;136(7):799-806
BACKGROUND:
The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25.
METHODS:
The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay.
RESULTS:
We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process.
CONCLUSIONS
The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.
Humans
;
Hepatitis B virus
;
DEAD Box Protein 58/metabolism*
;
RNA
;
Liver Neoplasms
;
Virus Replication
;
Tripartite Motif Proteins/genetics*
;
Transcription Factors
;
Ubiquitin-Protein Ligases/genetics*
3.MAFbx and MuRF1 mRNA expression and its relationship with muscular contractility following free muscle transfer.
An-Tang LIU ; Da-Zhi YU ; Ying-Fan ZHANG ; Wen-Jun ZHANG ; Wei-Jin DING ; An-Jing REN ; Chao-Ping FANG ; Hua JIANG
Chinese Journal of Plastic Surgery 2009;25(3):217-221
OBJECTIVETo study muscle atrophy F-box (MAFbx) and muscle ring finger 1 (MuRF1) mRNA expression and its relationship with muscular contraction following free muscle transfer.
METHODSThe gracilis muscle was orthotopic transferred in adult rat to establish the animal model. The muscle at the unoperated side was used as control. The expression of MAFbx and MuRF1 mRNA, the muscle contraction and muscle function were measured by real-time PCR and multiple function physiological device. The relationship among the expression of MAFbx and MuRF1 mRNA, the muscle contraction and muscle function was analyzed.
RESULTSAfter muscle free transfer, muscle wet weight reservation, the maximum contraction and tetanus strength reduce first and increased later, but still lower than those at control side. The expression of MAFbx and MuRF1 mRNA reached peak level 3 - 4 weeks after muscle transfer which was 7.1 and 4.1 times as that at control side. It decreased later, but still higher than that at control side, showing a significant difference between them (P< 0. 05).
CONCLUSIONSPersistent over-expression of MAFbx and MuRF1 mRNA after muscle transfer has a close relationship with muscle atrophy and muscle dysfunction. MAFbx and MuRF1 can be used as markers for early muscle atrophy, and also as potential target for drug treatment of muscle atrophy.
Animals ; Female ; Muscle Contraction ; Muscle Proteins ; genetics ; Muscle, Skeletal ; pathology ; Muscular Atrophy ; genetics ; metabolism ; pathology ; RING Finger Domains ; RNA, Messenger ; genetics ; Rats ; Rats, Sprague-Dawley ; SKP Cullin F-Box Protein Ligases ; genetics ; Tripartite Motif Proteins ; Ubiquitin-Protein Ligases ; genetics
4.Effect of TRIM31 Gene Silencing on the Proliferation and Apoptosis of U266 Cells and Its Mechanism.
Xing-Xing LONG ; Feng WEN ; Qian CHEN ; Yi-Xiong CAO ; Xiao-Qing HUANG
Journal of Experimental Hematology 2021;29(3):805-811
OBJECTIVE:
To investigate the effect of the tripartite motif containing 31 (TRIM31) gene silencing on the proliferation and apoptosis of multiple myeloma cells and its possible mechanism.
METHODS:
The normal bone marrow plasma cells (nPCs) were selected as control, and the mRNA and protein expression levels of TRIM31 in human multiple myeloma cell lines (U266, RPMI-8226, NCI-H929 and KMS-11) were detected by RT-qPCR and Western blot. Recombinant lentivirol vector containing shRNA-TRIM31 and its negative control were used to infect U266 cells respectively, and the mRNA expression level of TRIM31 in infected cells was detected by RT-qPCR. Then cell proliferation, colony forming and apoptosis were analyzed by CCK-8, soft agar assay, and flow cytometry, respectively. The protein expression levels of TRIM31, cleaved-caspase-3, BCL-2, Bax, p-Akt (Ser473), Akt and PI3K (p110α) were evaluated by Western blot. In addition, the PI3K/Akt signaling pathway-specific inhibitor LY294002 and TRIM31-shRNA lentivirus were used to interfere with U266 cells, and the cell proliferation, apoptosis, and protein expression of p-Akt (Ser473) and Akt were detected by CCK-8, flow cytometry and Western blot, respectively.
RESULTS:
Compared with nPCs, the expression levels of TRIM31 mRNA and protein in U266, RPMI-8226, NCI-H929 and KMS-11 cells were significantly increased (P<0.001), especially in U266 cells. After lentivirus infection, the levels of TRIM31 mRNA and protein in U266 cells were significantly decreased (P<0.001). TRIM31 silencing significantly inhibited the proliferation of U266 cells (P<0.05), attenuated the ability of cell cloning, improved cell apoptosis, up-regulated the protein expressions of cleaved-caspase-3 and Bas as well as down-regulated expressions of BCL-2, p-Akt (Ser473) and PI3K (p110α). There was no significant effect on Akt protein. Intervention of LY294002 significantly enhanced the inhibition on cell proliferation and the promotion on apoptosis mediated by TRIM31 gene silencing in U266 cells.
CONCLUSION
TRIM31 gene silencing can inhibit U266 cell proliferation and promote its apoptosis, which may be closely related to inhibition of PI3K/Akt signaling pathway.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Silencing
;
Humans
;
Multiple Myeloma
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Tripartite Motif Proteins/genetics*
;
Ubiquitin-Protein Ligases/genetics*
5.Structural and biochemical studies of RIG-I antiviral signaling.
Miao FENG ; Zhanyu DING ; Liang XU ; Liangliang KONG ; Wenjia WANG ; Shi JIAO ; Zhubing SHI ; Mark I GREENE ; Yao CONG ; Zhaocai ZHOU
Protein & Cell 2013;4(2):142-154
Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.
Adaptor Proteins, Signal Transducing
;
metabolism
;
Adenosine Triphosphate
;
metabolism
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
chemistry
;
genetics
;
metabolism
;
Dimerization
;
Humans
;
Mutagenesis, Site-Directed
;
Phosphorylation
;
Polyubiquitin
;
metabolism
;
Protein Binding
;
Protein Structure, Tertiary
;
RNA, Double-Stranded
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
chemistry
;
genetics
;
Signal Transduction
;
Transcription Factors
;
metabolism
;
Tripartite Motif Proteins
;
Ubiquitin-Protein Ligases
;
metabolism
;
Ubiquitination