1.Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells.
Juan Hua QUAN ; In Wook CHOI ; Jung Bo YANG ; Wei ZHOU ; Guang Ho CHA ; Yu ZHOU ; Jae Sook RYU ; Young Ha LEE
The Korean Journal of Parasitology 2014;52(6):595-603
Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite.
Blotting, Western
;
Cell Line, Tumor
;
Epithelial Cells/metabolism/parasitology
;
Humans
;
Metalloproteases/genetics/*metabolism
;
Proteolysis
;
Sequence Analysis, DNA
;
TOR Serine-Threonine Kinases/*metabolism
;
Trichomonas vaginalis/*enzymology/genetics
2.Involvement of PI3K/AKT and MAPK Pathways for TNF-alpha Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis.
Jung Bo YANG ; Juan Hua QUAN ; Ye Eun KIM ; Yun Ee RHEE ; Byung Hyun KANG ; In Wook CHOI ; Guang Ho CHA ; Jae Min YUK ; Young Ha LEE
The Korean Journal of Parasitology 2015;53(4):371-377
Trichomonas vaginalis induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-alpha production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-alpha production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-alpha production was significantly decreased compared to the control; however, TNF-alpha reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-alpha production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-alpha production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.
Cell Line
;
Cervix Uteri/enzymology/metabolism/*parasitology
;
Epithelial Cells/*enzymology/metabolism/parasitology
;
Female
;
Humans
;
*MAP Kinase Signaling System
;
Mucous Membrane/*enzymology/metabolism/parasitology
;
Phosphatidylinositol 3-Kinases/genetics/*metabolism
;
Proto-Oncogene Proteins c-akt/genetics/*metabolism
;
Trichomonas Vaginitis/*enzymology/genetics/metabolism/parasitology
;
Trichomonas vaginalis/*physiology
;
Tumor Necrosis Factor-alpha/genetics/*metabolism
3.Hydrogenosomal activity of Trichomonas vaginalis cultivated under different iron conditions.
Yong Seok KIM ; Hyun Ouk SONG ; Ik Hwa CHOI ; Soon Jung PARK ; Jae Sook RYU
The Korean Journal of Parasitology 2006;44(4):373-378
To evaluate whether iron concentration in TYM medium influence on hydrogenosomal enzyme gene expression and hydrogenosomal membrane potential of Trichomonas vaginalis, trophozoites were cultivated in irondepleted, normal and iron-supplemented TYM media. The mRNA of hydrogenosomal enzymes, such as pyruvate ferredoxin oxidoreductase (PFOR), hydrogenase, ferredoxin and malic enzyme, was increased with iron concentrations in T. vaginalis culture media, measured by RT-PCR. Hydrogenosomal membrane potentials measured with DiOC6 also showed similar tendency, e.g. T. vaginalis cultivated in iron-depleted and iron-supplemented media for 3 days showed a significantly reduced and enhanced hydrogenosomal membrane potential compared with that of normal TYM media, respectively. Therefore, it is suggested that iron may regulate hydrogenosomal activity through hydrogenosomal enzyme expression and hydrogenosomal membrane potential.
Trichomonas vaginalis/*growth & development
;
Reverse Transcriptase Polymerase Chain Reaction
;
Pyruvate Synthase/genetics/metabolism
;
Organelles/*enzymology/metabolism/*physiology
;
Membrane Potentials
;
Malate Dehydrogenase/genetics/metabolism
;
Iron/*metabolism
;
Hydrogenase/genetics/metabolism
;
Hydrogen/*metabolism
;
Humans
;
Gene Expression Regulation, Enzymologic
;
*Gene Expression Regulation
;
Ferredoxins/genetics/metabolism
;
Culture Media
;
Animals