1.Effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells.
Bao-an WANG ; Ming LI ; Yi-ming MU ; Zhao-hui LU ; Jiang-yuan LI
National Journal of Andrology 2006;12(6):516-519
OBJECTIVETo investigate the effects of tributyltin chloride (TBT) and triphenyltin chloride (TPT) on rat testicular Leydig cells.
METHODSThe rat Leydig cells (LC-540) were incubated with 0 to 80 nmol/L TBT and TPT for 24 to approximately 96 h, and then the cell viability was determined by MTT. DNA fragmentation ladder formation of cell apoptosis was examined by agarose electrophoresis. Effects of chelator of intracellular Ca2+ (BAPTA) and the inhibitors of PKA, PKC and TPK on cell apoptosis induced by TBT were observed. Effects of TBT on testosterone production in primary cultured rat Leydig cells treated with or without hCG were detected.
RESULTSTBT and TPT suppressed Leydig cell survival in a time- and dose-dependent manner. The suppressive effects of TBT and TPT on the cell survival was caused by apoptosis which was determined by DNA ladder formation. The apoptotic effect of TBT was possibly mediated by the rise in intracellular Ca2+ because it could be blocked by BAPTA, the chelator of intracellular Ca2+; PKA, PKC and TPK inhibitors did not prevent the apoptotic effects induced by TBT. TBT markedly suppressed testosterone production of primary cultured rat Leydig cells with or without hCG stimulation.
CONCLUSIONTBT and TPT induced apoptosis in rat testicular Leydig cells possibly through increasing intracellular Ca2+. TBT reduced the testosterone production of rat Leydig cells.
Animals ; Apoptosis ; drug effects ; Calcium ; metabolism ; Cell Line ; Dose-Response Relationship, Drug ; Environmental Pollutants ; toxicity ; Leydig Cells ; drug effects ; metabolism ; secretion ; Male ; Organotin Compounds ; toxicity ; Rats ; Testosterone ; secretion ; Trialkyltin Compounds ; toxicity
2.Effects of Tributyltin Chloride on the Reproductive System in Pubertal Male Rats.
Wook Joon YU ; Sang Yoon NAM ; Young Chul KIM ; Beom Jun LEE ; Young Won YUN
Journal of Veterinary Science 2003;4(1):29-34
Detrimental effects of tributyltin (TBT) chloride on the reproductive system were investigated in pubertal male rats. Sixty Sprague-Dawley rats aged with 35 days were assigned to six different groups; negative control receiving vehicle, positive control receiving methyltestosterone (10 mg/kg B.W.), TBT chloride (5 mg/kg B.W., 10 mg/kg B.W., and 20 mg/kg B.W.), and a combination of TBT chloride (10 mg/kg B.W.) and flutamide (10 mg/kg B.W). The animals were treated with test compounds by oral gavage daily for 10 days and sacrificed on the next day of the final treatment. The treatment with TBT chloride at the doses of 10 and 20 mg/kg B.W. significantly decreased seminal vesicle weights, compared to the negative control. The combined treatment of TBT chloride and flutamide caused a significant decrease in accessory sex organ weights, compared to the control and TBT chloride treatments. The treatment with TBT chloride or in the combination with flutamide increased detached debris and sloughed cells in the tubules of epididymis and narrowed seminal vesicles. In addition, the combined treatment with TBT chloride and flutamide caused a noticeable increase in serum androgen level, compared to the negative control.These results suggest that TBT chloride exposed during pubertal period cause partial reproductive disorders in male rats.
Animals
;
Body Weight
;
Epididymis/drug effects
;
Flutamide/pharmacology
;
Genitalia, Male/*drug effects
;
Male
;
Methyltestosterone/pharmacology
;
Organ Size
;
Prostate/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Seminal Vesicles/drug effects
;
*Sexual Maturation/drug effects
;
Testis/drug effects
;
Trialkyltin Compounds/*pharmacology
3.Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries.
Hyojin LEE ; Sojeong LIM ; Sujin YUN ; Ayoung YOON ; Gayoung PARK ; Hyunwon YANG
Clinical and Experimental Reproductive Medicine 2012;39(1):15-21
OBJECTIVE: Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. METHODS: Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). RESULTS: The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as PPARgamma, aP2, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as TNFalpha and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. CONCLUSION: The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function.
Adipogenesis
;
Animals
;
Apoptosis
;
DNA Nucleotidylexotransferase
;
Female
;
In Situ Nick-End Labeling
;
Ovarian Follicle
;
Ovary
;
PPAR gamma
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Receptors, Tumor Necrosis Factor, Type I
;
RNA
;
Sesame Oil
;
Trialkyltin Compounds
;
Tumor Necrosis Factor-alpha
4.Tributyltin increases the expression of apoptosis- and adipogenesis-related genes in rat ovaries.
Hyojin LEE ; Sojeong LIM ; Sujin YUN ; Ayoung YOON ; Gayoung PARK ; Hyunwon YANG
Clinical and Experimental Reproductive Medicine 2012;39(1):15-21
OBJECTIVE: Tributyltin (TBT), an endocrine disrupting chemical, has been reported to decrease ovarian function by causing apoptosis in the ovary, but the mechanism is not fully understood. Therefore, we examined whether TBT increases the expression of adipogenesis-related genes in the ovary and the increased expression of these genes is associated with apoptosis induction. METHODS: Three-week-old Sprague-Dawley rats were orally administered TBT (1 or 10 mg/kg body weight) or sesame oil as a control for 7 days. The ovaries were obtained and weighed on day 8, and then they were fixed for terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) or frozen for RNA extraction. Using the total RNA of the ovaries, adipogenesis- and apoptosis-related genes were analyzed by real-time polymerase chain reaction (PCR). RESULTS: The ovarian weight was significantly decreased in rats administered 10 mg/kg TBT compared to that in control rats. As determined by the TUNEL assay, the number of apoptotic follicles in ovary was significantly increased in rats administered 10 mg/kg TBT. The real-time PCR results showed that the expression of adipogenesis-related genes such as PPARgamma, aP2, CD36, and PEPCK was increased after TBT administration. In addition, apoptosis-related genes such as TNFalpha and TNFR1 were expressed more in the TBT-administered rats compared with the control rats. CONCLUSION: The present study demonstrates that TBT induces the expression of adipogenesis- and apoptosis-related genes in the ovary leading to apoptosis in the ovarian follicles. These results suggest that the increased expression of adipogenesis-related genes in the ovary by TBT exposure might induce apoptosis resulting in a loss of ovarian function.
Adipogenesis
;
Animals
;
Apoptosis
;
DNA Nucleotidylexotransferase
;
Female
;
In Situ Nick-End Labeling
;
Ovarian Follicle
;
Ovary
;
PPAR gamma
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Receptors, Tumor Necrosis Factor, Type I
;
RNA
;
Sesame Oil
;
Trialkyltin Compounds
;
Tumor Necrosis Factor-alpha
5.Determination of trimethyltin chloride in urine by headspace-gas chromatography.
Zheng RUAN ; Hong-fang TANG ; Dan-hua LIU ; Cheng-min XU ; Ya-Ling QIAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2011;29(2):141-144
OBJECTIVETo establish a detection method for trimethyltin chloride in urine by the Head space-GC.
METHODAfter derivatizing trimethyltin chloride, the urines was separated by the head space-gc, and then the trimethyltin chloride detected qualitatively and quantificationally.
RESULTSIn the concentration range of 0.02 ∼ 0.40 mg/L urinary trimethyltin chloride, showed a quadratic, r = 0.9992, detection limit was 0.005 mg/L, the relative standard deviation was 1.9% ∼ 2.5%, recovery was 92.0% to 100%, the urine samples can be saved at least 90 days in -18°C refrigerator.
CONCLUSIONThe instrument, reagents involved in the detection require low, the operations to processing samples are simple, high sensitivity, less interference, good reproducibility, and suitable for quantitative and qualitative analysis, convenient to promotion.
Chromatography, Gas ; methods ; Humans ; Trimethyltin Compounds ; urine ; Urinalysis ; methods
6.Follow up analysis of 6 patients with severe trimethyltin chloride poisoning for 4 years.
Gui Lan OUYANG ; Ling Hong WANG ; Gao Sheng XIE ; Hai Bing ZHU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):276-279
Objective: Objective to investigate the health changes of patients with severe trimethyltin chloride (TMT) poisoning in four years. Methods: Six patients with severe TMT poisoning treated in the First Affiliated Hospital of Gannan Medical College in August 2016 were numbered 1, 2, 3, 4, 5 and 6 respectively. The patients were followed up 0.5, 2 and 4 years after poisoning and compared and analyzed. The follow-up contents include: symptom degree, score of simple mental intelligence examination scale (MMSE) and modified Rankin Scale (MRS) , cranial magnetic resonance imaging (MRI) , EEG, etc. Results: The symptoms of dizziness, headache, chest tightness, palpitation, nausea and vomiting decreased gradually in 6 patients. The symptoms of speech disorder and memory decline in No.1, 2 and 3 patients gradually increased, and the scores of MMSE and Mrs gradually decreased; Patients No.4, 5 and 6 had improved speech disorder, but their memory decreased, MMSE and Mrs scores were still flat, and mild cognitive impairment. The brain atrophy of No.1, 2 and 3 patients was aggravated, which showed obvious atrophy of hippocampus, temporal lobe, insular lobe and cerebellum and enlargement of ventricle; There was no significant change in brain atrophy in No.4, 5 and 6 patients. Conclusion: The neurotoxic symptoms in the later stage of severe TMT poisoning are still serious, and the neurotoxic time is long.
Atrophy
;
Follow-Up Studies
;
Humans
;
Magnetic Resonance Imaging
;
Trimethyltin Compounds