1.Functional characterization of piggyBac-like elements from Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).
Jun LYU ; Qin SU ; Jinhui LIU ; Lin CHEN ; Jiawei SUN ; Wenqing ZHANG
Journal of Zhejiang University. Science. B 2022;23(6):515-527
PiggyBac is a transposable DNA element originally discovered in the cabbage looper moth (Trichoplusia ni). The T. ni piggyBac transposon can introduce exogenous fragments into a genome, constructing a transgenic organism. Nevertheless, the comprehensive analysis of endogenous piggyBac-like elements (PLEs) is important before using piggyBac, because they may influence the genetic stability of transgenic lines. Herein, we conducted a genome-wide analysis of PLEs in the brown planthopper (BPH) Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), and identified a total of 28 PLE sequences. All N. lugens piggyBac-like elements (NlPLEs) were present as multiple copies in the genome of BPH. Among the identified NlPLEs, NlPLE25 had the highest copy number and it was distributed on five chromosomes. The full length of NlPLE25 consisted of terminal inverted repeats and sub-terminal inverted repeats at both terminals, as well as a single open reading frame transposase encoding 546 amino acids. Furthermore, NlPLE25 transposase caused precise excision and transposition in cultured insect cells and also restored the original TTAA target sequence after excision. A cross-recognition between the NlPLE25 transposon and the piggyBac transposon was also revealed in this study. These findings provide useful information for the construction of transgenic insect lines.
Amino Acid Sequence
;
Animals
;
Animals, Genetically Modified
;
DNA Transposable Elements/genetics*
;
Hemiptera/genetics*
;
Transposases/genetics*
2.Construction and expression analysis of the zebrafish heart-specific transgenetic vector based on Tol2 transposable element.
Tingfang CHEN ; Na LUO ; Huaping XIE ; Xiushan WU ; Yun DENG
Chinese Journal of Biotechnology 2010;26(2):230-236
In an effort to generate a desired expression construct for making heart-specific expression transgenic zebrafish, a Tol2 plasmid, which can drive EGFP reporter gene specifically expressed in the heart, was modified using subcloning technology. An IRES fragment bearing multiple cloning site (MCS) was amplified directly from pIRES2-EGFP plasmid and was inserted between the CMLC2 promoter and EGFP fragment of the pDestTol2CG vector. This recombinant expression plasmid pTol2-CMLC2-IRES-EGFP can drive any interested gene specifically expressed in the zebrafish heart along with EGFP reporter gene. To test the effectiveness of this new expression plasmid, we constructed pTol2-CMLC2-RED-IRES-EGFP plasmid by inserting another reporter gene DsRed-Monome into MCS downstream of the CMLC2 promoter and injected this transgenic recombinant plasmid into one-cell stage embryos of zebrafish. Under fluorescence microscope, both the red fluorescence and the green fluorescence produced by pTol2-CMLC2-RED-IRES-EGFP were detected specifically in the heart tissue in the same expression pattern. This novel expression construct pTol2-CMLC2-IRES-EGFP will become an important tool for our research on identifying heart development candidate genes' function using zebrafish as a model.
Animals
;
Animals, Genetically Modified
;
genetics
;
growth & development
;
DNA Transposable Elements
;
genetics
;
Genes, Reporter
;
genetics
;
Genetic Vectors
;
biosynthesis
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
Myocardium
;
metabolism
;
Plasmids
;
genetics
;
Transfection
;
Transgenes
;
Transposases
;
genetics
;
Zebrafish
;
genetics
;
Zebrafish Proteins
;
genetics
;
metabolism
3.Role of sul2 Gene Linked to Transposase in Resistance to Trimethoprim/Sulfamethoxazole Among Stenotrophomonas maltophilia Isolates.
Li Fen HU ; Xi Hai XU ; Hai Fei YANG ; Ying YE ; Jia Bin LI
Annals of Laboratory Medicine 2016;36(1):73-75
No abstract available.
Anti-Bacterial Agents/*pharmacology
;
Bacterial Proteins/*genetics
;
Carrier Proteins/*genetics
;
Drug Resistance, Multiple, Bacterial/*genetics
;
Humans
;
Stenotrophomonas maltophilia/drug effects/*genetics/isolation & purification
;
Transposases/*genetics
;
Trimethoprim, Sulfamethoxazole Drug Combination/*pharmacology