1.Recent advances in the study of synaptic endocytosis key protein: Dynamin.
Journal of Central South University(Medical Sciences) 2014;39(10):1088-1092
As the basic physiological function of synapses, vesicle cycling involves in many aspects of process. Among them, vesicle recycling is the basis of synaptic vesicle cycling. Studies show that clathrin mediated endocytosis is a major pathway of vesicle recycling, in which Dynamin plays an important role. Dynamin is a GTPases with molecular weight of 100 kD, which acts as "scissors" in the endocytosis, separating the clathrin coated pits from membrane. It has been found that Dynamin is associated with epilepsy, Alzheimer's disease, centronuclear myopathy, and several other neurological diseases. In this paper, we discussed the structure, function and regulation of Dynamin, and reviewed recent advance in the studies on Dynamin related diseases.
Clathrin
;
physiology
;
Coated Pits, Cell-Membrane
;
physiology
;
Dynamins
;
physiology
;
Endocytosis
;
Humans
;
Synapses
;
physiology
;
Synaptic Transmission
;
Synaptic Vesicles
;
physiology
2.Function of intersectin in endocytosis and exocytosis.
Chun-Ying TIAN ; Chun-Ling ZHANG ; Feng GU ; Yong-Jie MA
Acta Physiologica Sinica 2012;64(4):489-494
Intersectin is an evolutionarily conserved multifunctional adaptor protein with multifunctional domains. These domains interact with components of the endocytic and exocytic pathways, such as the clathrin mediating synaptic vesicle recycling, the protein related to endocytosis via caveolae, the with-no-lysine kinases related to the regulation of renal outer medullar potassium, and the Cdc42 mediating exocytic pathway. Recently, the understanding of intersectin function in the pathogenesis of endocrine tumor and many neurodegenerative diseases such as Down syndrome, Alzheimer disease has been deepened. This article reviewed the structure and roles in endocytosis/exocytosis and diseases of intersectin.
Adaptor Proteins, Vesicular Transport
;
physiology
;
Endocytosis
;
Exocytosis
;
Humans
;
Synaptic Vesicles
;
physiology
3.Kinesin Superfamily KIF1A Protein Binds to Synaptotagmin XI.
Hye Young PARK ; Sung Su YEA ; Won Hee JANG ; Joon Yong CHUNG ; Sang Kyeong LEE ; Sang Jin KIM ; Young Il YANG ; Joo Yung KIM ; Yeong Hong PARK ; Dae Hyun SEOG
Korean Journal of Anatomy 2005;38(5):403-411
The kinesin proteins (KIFs) make up a large superfamily of molecular motors that transport cargo such as vesicles, protein complexes, and organelles. KIF1A is a monomeric motor that conveys synaptic vesicle precursors and plays an important role in neuronal function. Here, we used the yeast two-hybrid system to identify the neuronal protein (s) that interacts with the tail region of KIF1A and found a specific interaction with synaptotagmin XI. The amino acid residues between 830 and 1300 of KIF1A are required for the interaction with synaptotagmin XI. KIF1A also bound to the tail region of synaptotagmin IV but not to other synaptotagmin in the yeast two-hybrid assay. KIF1A interacted with GST-synaptotagim XI fusion proteins, but not with GST alone. An antibody to synaptotagmin XI specifically co-mmunoprecipitated KIF1A associated with synaptotagimin from mouse brain extracts. These results suggest that KIF1A motor protein transports of synaptotagmin XI-containing synaptic vesicle precursors along microtubule.
Animals
;
Brain
;
Kinesin*
;
Mice
;
Microtubules
;
Neurons
;
Organelles
;
Protein Transport
;
Synaptic Vesicles
;
Synaptotagmins*
;
Two-Hybrid System Techniques
4.The hydrophobic amino acids involved in the interdomain association of phospholipase D1 regulate the shuttling of phospholipase D1 from vesicular organelles into the nucleus.
Experimental & Molecular Medicine 2012;44(10):571-577
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger, phosphatidic acid. PLD is localized in most cellular organelles, where it is likely to play different roles in signal transduction. PLD1 is primarily localized in vesicular structures such as endosomes, lysosomes and autophagosomes. However, the factors defining its localization are less clear. In this study, we found that four hydrophobic residues present in the N-terminal HKD catalytic motif of PLD1, which is involved in intramolecular association, are responsible for vesicular localization. Site-directed mutagenesis of the residues dramatically disrupted vesicular localization of PLD1. Interestingly, the hydrophobic residues of PLD1 are also involved in the interruption of its nuclear localization. Mutation of the residues increased the association of PLD1 with importin-beta, which is known to mediate nuclear importation, and induced the localization of PLD1 from vesicles into the nucleus. Taken together, these data suggest that the hydrophobic amino acids involved in the interdomain association of PLD1 are required for vesicular localization and disturbance of its nuclear localization.
Amino Acid Motifs
;
Amino Acid Sequence
;
Amino Acids/chemistry
;
Cell Nucleus/*enzymology
;
Endosomes/enzymology
;
HEK293 Cells
;
Humans
;
Hydrophobic and Hydrophilic Interactions
;
Lysosomes/enzymology
;
Phagosomes/enzymology
;
Phospholipase D/chemistry/*metabolism
;
Protein Interaction Domains and Motifs
;
Protein Transport
;
Transport Vesicles/*enzymology
5.Purification of clathrin assembly protein from rat liver.
Experimental & Molecular Medicine 2000;32(4):222-226
Recently, the gene encoding clathrin assembly protein of lymphoid myeloid leukemia (CALM), which is homologous to the AP180, was cloned from rat brain, and its expression differential to AP180 was reported (Kim and Lee, 1999). This gene product promotes the polymerization of clathrin into clathrin cage and found to be a regulator in membrane trafficking between intracellular compartments in eukaryotic cells (Kim et al., 2000). In this study, we have purified the CALM protein from clathrin-coated vesicles of rat liver using the monoclonal antibody against the recombinant N-terminal region of the CALM. The coated proteins extracted from the coated vesicle fraction was further purified by multi-step procedures involving gel-filtration and ion-exchange chromatography and SDS-PAGE. The purified protein with an apparent molecular weight of 100 kD promoted the assembly of clathrin triskelia into clathrin cage. In this respect the CALM protein bears a functional resemblance to the AP180 that has been previously described.
Animal
;
Clathrin/*metabolism
;
Clathrin-Coated Vesicles/*chemistry
;
Liver/*chemistry
;
Nerve Tissue Proteins/*isolation & purification
;
Phosphoproteins/*isolation & purification
;
Rats
6.Intracellular trafficking and metabolic turnover of yeast prepro-alpha-factor-SRIF precursors in GH3 cells.
Myung Ae LEE ; Kwang Ho CHEONG ; Dennis SHIELDS ; Sang Dai PARK ; Seung Hwan HONG
Experimental & Molecular Medicine 2002;34(4):285-293
Chimeric genes coding for prepro region of yeast alpha-factor and anglerfish SRIF were expressed in rat GH3 cells to determine whether yeast signals could regulate hormone processing in mammalian cells. We report that nascent hybrid polypeptides were efficiently targeted to ER, where cleavage of signal peptides and core glycosylation occurred, and were localized mainly in Golgi. These data indicate that prepro region of yeast alpha-factor functions in sorting molecules to secretory pathway in mammalian cells. A hybrid construct with a mutated signal peptide underwent similar ER translocation, whereas such a mutation resulted in defective translocation in yeast (Cheong et al., 1997). This difference may be due to the differences in ER translocation between yeast and mammalian cells, i.e., posttranslational versus cotranslational translocation. Processing and secretion of metabolically labeled hybrid propeptides to mature SRIF peptides were assessed by HPLC. When pulse-labeled cells were chased for up to 2 h, intracellular propeptides disappeared with a half-life of approximately 25 min, showing that -68% of initially synthesized propeptides were secreted constitutively. About 22% of SRIF-related products were proteolytically processed to mature SRIF, of which 38.7% were stored intracellularly with a half-life of - 2 h. In addition, immunocytochemical localization showed that a small proportion of SRIF molecules accumulated in secretory vesicles. All these results suggest that yeast prepropeptide could direct hybrid precursors to translocate into ER lumen and transit through secretory pathway to the distal elements of Golgi compartment, but could process and target it less efficiently to downstream in rat endocrine cells.
Animals
;
Cell Line
;
Endoplasmic Reticulum/metabolism
;
Golgi Apparatus/metabolism
;
Kinetics
;
Peptides/genetics/*metabolism
;
Pituitary Gland, Anterior/*cytology
;
Protein Precursors/biosynthesis/genetics/*metabolism
;
*Protein Processing, Post-Translational
;
Protein Sorting Signals/genetics
;
Protein Transport
;
Rats
;
Recombinant Proteins/biosynthesis/metabolism
;
Retroviridae/genetics
;
Saccharomyces cerevisiae/genetics/*metabolism
;
Saccharomyces cerevisiae Proteins/biosynthesis/genetics/*metabolism
;
Secretory Vesicles/metabolism
;
Somatostatin/biosynthesis/genetics/metabolism/secretion
7.Intracellular trafficking and metabolic turnover of yeast prepro-alpha-factor-SRIF precursors in GH3 cells.
Myung Ae LEE ; Kwang Ho CHEONG ; Dennis SHIELDS ; Sang Dai PARK ; Seung Hwan HONG
Experimental & Molecular Medicine 2002;34(4):285-293
Chimeric genes coding for prepro region of yeast alpha-factor and anglerfish SRIF were expressed in rat GH3 cells to determine whether yeast signals could regulate hormone processing in mammalian cells. We report that nascent hybrid polypeptides were efficiently targeted to ER, where cleavage of signal peptides and core glycosylation occurred, and were localized mainly in Golgi. These data indicate that prepro region of yeast alpha-factor functions in sorting molecules to secretory pathway in mammalian cells. A hybrid construct with a mutated signal peptide underwent similar ER translocation, whereas such a mutation resulted in defective translocation in yeast (Cheong et al., 1997). This difference may be due to the differences in ER translocation between yeast and mammalian cells, i.e., posttranslational versus cotranslational translocation. Processing and secretion of metabolically labeled hybrid propeptides to mature SRIF peptides were assessed by HPLC. When pulse-labeled cells were chased for up to 2 h, intracellular propeptides disappeared with a half-life of approximately 25 min, showing that -68% of initially synthesized propeptides were secreted constitutively. About 22% of SRIF-related products were proteolytically processed to mature SRIF, of which 38.7% were stored intracellularly with a half-life of - 2 h. In addition, immunocytochemical localization showed that a small proportion of SRIF molecules accumulated in secretory vesicles. All these results suggest that yeast prepropeptide could direct hybrid precursors to translocate into ER lumen and transit through secretory pathway to the distal elements of Golgi compartment, but could process and target it less efficiently to downstream in rat endocrine cells.
Animals
;
Cell Line
;
Endoplasmic Reticulum/metabolism
;
Golgi Apparatus/metabolism
;
Kinetics
;
Peptides/genetics/*metabolism
;
Pituitary Gland, Anterior/*cytology
;
Protein Precursors/biosynthesis/genetics/*metabolism
;
*Protein Processing, Post-Translational
;
Protein Sorting Signals/genetics
;
Protein Transport
;
Rats
;
Recombinant Proteins/biosynthesis/metabolism
;
Retroviridae/genetics
;
Saccharomyces cerevisiae/genetics/*metabolism
;
Saccharomyces cerevisiae Proteins/biosynthesis/genetics/*metabolism
;
Secretory Vesicles/metabolism
;
Somatostatin/biosynthesis/genetics/metabolism/secretion
8.Kinesin Superfamily KIF5 Proteins Bind to betaIII Spectrin.
Jae Eun PAIK ; Nari KIM ; Sung Su YEA ; Won Hee JANG ; Joon Young CHUNG ; Sang Kyoung LEE ; Yeong Hong PARK ; Jin HAN ; Dae Hyun SEOG
The Korean Journal of Physiology and Pharmacology 2004;8(3):167-172
The kinesin proteins (KIFs) make up a large superfamily of molecular motors that transport cargo such as vesicles, protein complexes, and organelles. KIF5 is a heterotetrameric motor that conveys vesicles and plays an important role in neuronal function. Here, we used the yeast two-hybrid system to identify the neuronal protein (s) that interacts with the tail region of KIF5 and found a specific interaction with betaIII spectrin. The amino acid residues between 1394 and 1774 of betaIII spectrin were required for the interaction with KIF5C. betaIII spectrin also bound to the tail region of neuronal KIF5A and ubiquitous KIF5B but not to other kinesin family members in the yeast two-hybrid assay. In addition, these proteins showed specific interactions, confirmed by GST pull-down assay and co-immunoprecipitation. betaIII spectrin interacted with GST-KIF5 fusion proteins, but not with GST alone. An antibody to betaIII spectrin specifically co-immunoprecipitated KIF5s associated with betaIII spectrin from mouse brain extracts. These results suggest that KIF5 motor proteins transport vesicles or organelles that are coated with betaIII spectrin.
Animals
;
Brain
;
Humans
;
Immunoprecipitation
;
Kinesin*
;
Mice
;
Microtubules
;
Neurons
;
Organelles
;
Spectrin*
;
Transport Vesicles
;
Two-Hybrid System Techniques
9.Recently Identified Forms of Epidermolysis Bullosa.
Annals of Dermatology 2015;27(6):658-666
Epidermolysis bullosa (EB) comprises a collection of clinically diverse inherited blistering diseases that affect the skin and, in some subtypes, mucous membranes and other organs. Currently classified into four main subtypes (EB simplex, junctional EB, dystrophic EB, and Kindler syndrome, mainly based on the level of skin cleavage), the spectrum of EB extends to more than 30 clinical subtypes with pathogenic mutations in at least 18 distinct genes. This review focuses on three recent additions to variants of EB: all are autosomal recessive, and result from mutations in either DST-e (coding for epidermal dystonin, also known as the 230 kDa bullous pemphigoid antigen, BP230), EXPH5 (coding for exophilin-5, also known as Slac2-b), or ITGA3 (coding for the integrin alpha-3 subunit). Each of these new forms of EB is reviewed with respect to the initial gene discovery, clinical features, the current mutation database, and skin pathology. Awareness of these recently described forms of EB is helpful in the clinical evaluation of patients with EB and in defining genotype-phenotype correlation for inherited blistering skin diseases.
Basement Membrane
;
Blister
;
Epidermolysis Bullosa*
;
Genetic Association Studies
;
Hemidesmosomes
;
Humans
;
Mucous Membrane
;
Pathology
;
Pemphigoid, Bullous
;
Skin
;
Skin Diseases
;
Transport Vesicles
10.Dynamin-mediated endocytic process contributes to neuronal nitric oxide synthase-mediated regulation of cardiac contraction.
Kai LIU ; Jun LI ; Yi-Han CHEN
Acta Physiologica Sinica 2011;63(3):211-218
Nitric oxide synthases (NOSs) play complex roles in the regulation of cardiac excitation contraction coupling under basal and stressed conditions. Herein, using the recording approach for intracellular calcium transient and synchronous myocyte contraction, the potential mechanism for NOSs-mediated cardiomyocyte contraction was explored. We found that selective inhibition of neuronal NOS (nNOS) with 100 µmol/L spermidine markedly enhanced the cardiomyocyte twitch [control: (10.5 ± 0.21)%; nNOS inhibition: (12.4 ± 0.18)%] and calcium transient [control: (0.27 ± 0.03)%; nNOS inhibition: (0.42 ± 0.01)%], but slowed the relengthening of twitch [control: (25.2 ± 1.3) ms; nNOS inhibition: (53 ± 2.8) ms] and the calcium transient decay [control: (129 ± 4.3) ms; nNOS inhibition: (176 ± 7.1) ms], which was similar to that by dynamin inhibition with 30 µmol/L dynasore. The nNOS inhibition- or dynasore-mediated effects could be rescued by an NO donor, S-Nitroso-N-acetylpenicillamine (SNAP). Our data suggest that the selective nNOS-mediated regulation of cardiac contractile activity may partly involve the dynamin-mediated endocytic mechanism.
Animals
;
Biological Transport
;
Calcium Signaling
;
Dynamins
;
antagonists & inhibitors
;
physiology
;
Endocytosis
;
physiology
;
Female
;
Hydrazones
;
pharmacology
;
Male
;
Myocardial Contraction
;
physiology
;
Nitric Oxide Synthase Type I
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Spermidine
;
pharmacology
;
Transport Vesicles
;
physiology