1.Analysis of genomic copy number variation for a Chinese patient with split hand/split foot malformation.
Yunying CHEN ; Huanzheng LI ; Shaohua TANG ; Ting HU ; Jicheng DU
Chinese Journal of Medical Genetics 2014;31(6):774-777
OBJECTIVETo employ single nucleotide polymorphisms (SNP) microarray to detect copy number variations (CNVs) for the diagnosis of disease and molecular classification.
METHODSFor a patient with split-hand/split-foot malformation, genome-wide copy number variants SNP microarray was applied. Tiny copy number variations were verified by real-time fluorescent quantitative PCR.
RESULTSThe results of SNP microarray has revealed that the patient has carried a 0.39 Mb duplication in 10q24.31-24.32 (102 955 122-103 348 688), which has encompassed genes including LBX1, BTRC and POLL. By real-time fluorescent quantitative PCR, duplicate area encompassing the pathogenic genes have been verified. The results for LBX1, BTRC, POLL genes were all consistent with the SNP microarray test. Moreover, a duplication was detected in exon 9 of FBXW4 gene which is in nearby.
CONCLUSIONSNP chips can efficiently identify tiny CNVs (< 1.0 Mb). In combination with real-time fluorescence quantitative PCR, this may provide valuable information for prenatal diagnosis.
Adult ; Asian Continental Ancestry Group ; genetics ; China ; Chromosome Duplication ; DNA Copy Number Variations ; DNA Polymerase beta ; genetics ; Homeodomain Proteins ; genetics ; Humans ; Limb Deformities, Congenital ; genetics ; Male ; Polymorphism, Single Nucleotide ; Transcription Factors ; genetics ; beta-Transducin Repeat-Containing Proteins ; genetics
2.A multiplex PCR-based sensitive and specific method for detecting Y chromosome material in patients with Turner syndrome.
Qiang ZHAO ; Shuxiong CHEN ; Hailin SUN ; Wanling YANG ; Bo BAN
Chinese Journal of Medical Genetics 2022;39(11):1216-1223
OBJECTIVE:
To develop a multiplex PCR method for a rapid detection of Y chromosome-specific sequences in patients with Turner syndrome.
METHODS:
Nine genes were selected from various regions of the Y chromosome for designing the primers, which included SRY, TBL1Y, TSPY on the short arm of the Y chromosome, DDX3Y, HSFY1, RPS4Y2 and CDY1 on the long arm of Y chromosome and SHOX in the short arm and SPRY3 in the long arm of the pseudoautosomal region (PAR) of X and Y chromosomes. A multiplex PCR method for the nine genes in Y chromosome was established and optimized. The sensitivity was tested by using different amounts of genomic DNA. A total of 36 patients with Turner syndrome and a patient with male dwarfism with karyotype of 46, X, +mar were examined by the multiplex PCR method for the existence of materials from the Y chromosome.
RESULTS:
The optimization results of the multiplex PCR reaction system (50 μL) showed that when the final concentration of upstream and downstream of each pair of primers was 0.1 μM, the multiplex PCR reaction of the 9 pairs of primers clearly amplified the target with the expected band size, and there was no non-specific amplification. The bands were clearly visible when the amount of genomic DNA in the multiple PCR reaction system was as low as 1 ng. By using the method, we have examined the 36 patients with Turner syndrome. One patient with Turner syndrome with karyotype of 45,X[40]/47XYY[21] amplified specific seven genes on Y chromosome, 35 patients with Turner syndrome amplified only two target genes SHOX and SPRY3, but not the other seven specific genes on the Y chromosome, which was in keeping with the clinical manifestations of such patients.
CONCLUSION
This study established a multiplex PCR reaction system with nine genes, which can quickly and accurately screen Y chromosome materials in patients with Turner syndrome. It has the advantages of low cost, simple operation, high specificity and rapid turn-around time, and can be used to detect Turner syndrome patients with Y chromosome material in time. The method has provided a diagnostic basis for preventive gonad resection to prevent malignant gonadal tumors.
Humans
;
Male
;
Turner Syndrome/genetics*
;
Multiplex Polymerase Chain Reaction
;
Y Chromosome
;
Karyotyping
;
DNA Primers
;
DNA
;
Chromosomes, Human, Y/genetics*
;
Transducin/genetics*
;
Minor Histocompatibility Antigens
;
DEAD-box RNA Helicases/genetics*
3.Gene expression profiling of light-induced retinal degeneration in phototransduction gene knockout mice.
Jayalakshmi KRISHNAN ; Jiayan CHEN ; Kum Joo SHIN ; Jong Ik HWANG ; Sang Uk HAN ; Gwang LEE ; Sangdun CHOI
Experimental & Molecular Medicine 2008;40(5):495-504
Exposure to light can induce photoreceptor cell death and exacerbate retinal degeneration. In this study, mice with genetic knockout of several genes, including rhodopsin kinase (Rhok-/-), arrestin (Sag-/-), transducin (Gnat1-/-), c-Fos (c-Fos-/-) and arrestin/transducin (Sag-/-/Gnat1-/-), were examined. We measured the expression levels of thousands of genes in order to investigate their roles in phototransduction signaling in light-induced retinal degeneration using DNA microarray technology and then further explored the gene network using pathway analysis tools. Several cascades of gene components were induced or inhibited as a result of corresponding gene knockout under specific light conditions. Transducin deletion blocked the apoptotic signaling induced by exposure to low light conditions, and it did not require c-Fos/AP-1. Deletion of c-Fos blocked the apoptotic signaling induced by exposure to high intensity light. In the present study, we identified many gene transcripts that are essential for the initiation of light-induced rod degeneration and proposed several important networks that are involved in pro- and anti-apoptotic signaling. We also demonstrated the different cascades of gene components that participate in apoptotic signaling under specific light conditions.
Animals
;
Apoptosis/radiation effects
;
G-Protein-Coupled Receptor Kinase 1/genetics
;
GTP-Binding Protein alpha Subunits/genetics
;
*Gene Expression Profiling
;
Genes, fos/genetics
;
Light/adverse effects
;
Light Signal Transduction/*genetics/physiology/radiation effects
;
Mice
;
Mice, Knockout
;
Oligonucleotide Array Sequence Analysis
;
Retina/metabolism/pathology/radiation effects
;
Retinal Degeneration/etiology/*genetics/physiopathology
;
Transducin/genetics
4.beta-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells.
Yong Weon YI ; Hyo Jin KANG ; Edward Jeong BAE ; Seunghoon OH ; Yeon Sun SEONG ; Insoo BAE
Experimental & Molecular Medicine 2015;47(2):e143-
An F-box protein, beta-TrCP recognizes substrate proteins and destabilizes them through ubiquitin-dependent proteolysis. It regulates the stability of diverse proteins and functions as either a tumor suppressor or an oncogene. Although the regulation by beta-TrCP has been widely studied, the regulation of beta-TrCP itself is not well understood yet. In this study, we found that the level of beta-TrCP1 is downregulated by various protein kinase inhibitors in triple-negative breast cancer (TNBC) cells. A PI3K/mTOR inhibitor PI-103 reduced the level of beta-TrCP1 in a wide range of TNBC cells in a proteasome-dependent manner. Concomitantly, the levels of c-Myc and cyclin E were also downregulated by PI-103. PI-103 reduced the phosphorylation of beta-TrCP1 prior to its degradation. In addition, knockdown of beta-TrCP1 inhibited the proliferation of TNBC cells. We further identified that pharmacological inhibition of mTORC2 was sufficient to reduce the beta-TrCP1 and c-Myc levels. These results suggest that mTORC2 regulates the stability of beta-TrCP1 in TNBC cells and targeting beta-TrCP1 is a potential approach to treat human TNBC.
Cell Line, Tumor
;
Cell Proliferation
;
Cell Survival/drug effects
;
Cyclin E/genetics/metabolism
;
Dose-Response Relationship, Drug
;
Female
;
Furans/pharmacology
;
Gene Knockdown Techniques
;
Humans
;
Models, Biological
;
Multiprotein Complexes/antagonists & inhibitors
;
Phosphatidylinositol 3-Kinases/*antagonists & inhibitors
;
Phosphorylation/drug effects
;
Protein Kinase Inhibitors/*pharmacology
;
Proteolysis/drug effects
;
Proto-Oncogene Proteins c-myc/genetics/metabolism
;
Pyridines/pharmacology
;
Pyrimidines/pharmacology
;
TOR Serine-Threonine Kinases/*antagonists & inhibitors
;
Triple Negative Breast Neoplasms/genetics/*metabolism
;
beta-Transducin Repeat-Containing Proteins/genetics/*metabolism