2.Protective effect of ethyl acetate extract from Bidens bipinnata on hepatocyte damage induced by endoplasmic reticulum stress.
Man-Lin GUO ; Xiang-Yu MA ; Yu-Qing GONG ; Meng-Lin FENG ; Yu-Wan ZHAO ; Leng-Xin DUAN
China Journal of Chinese Materia Medica 2021;46(15):3893-3899
To explore the protective effect and mechanism of ethyl acetate extract from Bidens bipinnata on hepatocyte damage induced by endoplasmic reticulum stress. Tunicamycin was used to establish the damage model in L02 cells. Methyl thiazolyl tetrazolium(MTT) colorimetric assay was used to investigate the survival rate of ethyl acetate extract from B. bipinnata in L02 cells injury induced by endoplasmic reticulum stress; the protein expressions of endoplasmic reticulum stress-related molecule glucose regulated protein 78(GRP78), PKR-like ER kinase(PERK), eukaryotic initiation factor-2(eIF2α), activating transcription factor 4(ATF4), C/EBP homologous protein(CHOP), B-cell CLL/lymphoma 2(Bcl-2), Bal-2 associated X apoptosis regulator(Bax) were examined by Wes-tern blot. The expressions of the above proteins were also detected after endoplasmic reticulum stress inhibitor(4-phenyl butyric acid) and CHOP shRNA-mediated knockdowns were added. The expressions of GRP78, PERK, CHOP in L02 cells were observed by immunofluorescence method. The results showed that ethyl acetate extract from B. bipinnata could significantly increase the survival rate of L02 cell injury caused by endoplasmic reticulum stress in a dose and time-dependent manner(P<0.05 or P<0.01). The expression levels of GRP78, PERK, eIF2α, ATF4, CHOP and Bax in the drug treatment groups were significantly down-regulated(P<0.05 or P<0.01), while Bcl-2 was significantly up-regulated(P<0.01). After endoplasmic reticulum stress inhibitor and CHOP shRNA-mediated knockdowns were added, the expression levels of GRP78, PERK, eIF2α, ATF4, CHOP, Bax in the drug treatment groups were significantly down-regulated(P<0.01), whereas Bcl-2 was significantly up-regulated(P<0.01). Immunofluorescence results showed that the expressions of GRP78, PERK, CHOP were consistent with the Western blot method. In conclusion, ethyl acetate extract from B. bipinnata has a significant protective effect on the damage of L02 cells caused by endoplasmic reticulum stress. The mechanism may be related to the inhibition of endoplasmic reticulum stress and the down-regulation of apoptosis in cells through the PERK/eIF2α/ATF4/CHOP signaling pathway.
Acetates
;
Apoptosis
;
Bidens
;
Endoplasmic Reticulum Stress
;
Hepatocytes
;
Transcription Factor CHOP/genetics*
;
eIF-2 Kinase/genetics*
3.Clinical value of fluorescence in situ hybridization with MDM2 and DDIT3 probe in diagnosis of liposarcoma.
Wei WANG ; Xin LI ; Ping LIU ; Ying DONG
Journal of Peking University(Health Sciences) 2023;55(2):228-233
OBJECTIVE:
To investigate the value of using MDM2 amplification probe and DDIT3 dual-color, break-apart rearrangement probe fluorescence in situ hybridization (FISH) technique in the diagnosis of liposarcoma.
METHODS:
In the study, 62 cases of liposarcoma diagnosed in Peking University First Hospital from January 2015 to December 2019 were analysed for clinicopathological information. Of these 62 cases of liposarcoma, all were analysed for MDM2 amplification and 48 cases were analysed for DDIT3 rearrangement using a FISH technique. Our study aimed to evaluate the status of MDM2 and DDIT3 by FISH in liposarcoma and correlate it with diagnosis of different subtypes of liposarcoma. The subtypes of liposarcoma were classified according to the FISH results, combined with the relevant clinicopathological features.
RESULTS:
The patients aged 31-89 years (mean: 59 years) with a 1.75:1 male to female ratio. Histologically, there were 20 cases of atypical lipomatous tumour/well-differentiated liposarcoma (ALT/WDLPS), 26 cases of dedifferentiated liposarcoma (DDLPS), 13 myxoid liposarcoma (MLPS) and 3 pleomorphic liposarcoma (PLPS). Tumors with DDLPS (23/26) and WDLPS (8/20) were localized retroperitoneally, while both tumours of MLPS and PLPS were localized extra-retroperitoneally, and the difference of sites among the four subtypes of liposarcoma was statistically significant (P < 0.05). Histologically, varied mucoid matrix could be observed in the four subtypes of liposarcoma, and the difference was statistically significant (P < 0.05). MDM2 gene amplification was demonstrated in all cases of ALT/WDLPS and DDLPS (100%, 20/20 and 26/26 respectively); DDIT3 gene rearrangement was noted only in MLPS (100%, 13/13); most cases of DDLPS (96.2%, 25/26) and ALT/WDLPS (83.3%, 5/6, 6 cases selected for detection) demonstrated the picture of amplification of the DDIT3 telomeric tag. According to the instructions of DDIT3 break-apart rearrangement probe, the 5' telomere probe and 3' centromere probe spanned but did not cover the DDIT3 gene itself, on the contrary, the 5' telomere probe covered the CDK4 gene, while the DDIT3 and CDK4 gene were located adjacent to each other on chromosome, therefore, when the amplification signal appeared on the telomeric tag of the DDIT3 rearrangement probe, it indeed indicated the CDK4 gene amplification rather than the DDIT3 gene rearrangement. Then the 10 cases with DDIT3 telomeric tag amplification were selected for CDK4 and DDIT3 gene amplification probe FISH tests, and all the cases showed CDK4 gene amplification (100%, 10/10) and two of the 10 cases demonstrated co-amplification of CDK4 and DDIT3 (20%, 2/10); DDIT3 polysomy detected by DDIT3 gene rearrangement probe was found in 1 case of DDLPS and 2 cases of PLPS (66.7%, 2/3) with morphology of high-grade malignant tumour and poor prognosis.
CONCLUSION
Our results indicate that a diagnosis of different subtype liposarcoma could be confirmed based on the application of MDM2 and DDIT3 FISH, combined with clinicopathological findings. It is also noteworthy that atypical signals should be correctly interpreted to guide correct treatment of liposarcomas.
Male
;
Female
;
Humans
;
In Situ Hybridization, Fluorescence/methods*
;
Cyclin-Dependent Kinase 4/metabolism*
;
Liposarcoma/pathology*
;
Lipoma/pathology*
;
Gene Amplification
;
Transcription Factor CHOP/genetics*
;
Proto-Oncogene Proteins c-mdm2/metabolism*
4.Role of PERK/eIF2α/CHOP Endoplasmic Reticulum Stress Pathway in Oxidized Low-density Lipoprotein Mediated Induction of Endothelial Apoptosis.
Yong Kang TAO ; Pu Lin YU ; Yong Ping BAI ; Sheng Tao YAN ; Shui Ping ZHAO ; Guo Qiang ZHANG
Biomedical and Environmental Sciences 2016;29(12):868-876
OBJECTIVEPERK/eIF2α/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in the initiation and progression of atherosclerosis. The present study was conducted to explore the regulatory effect of ox-LDL on PERK/eIF2α/CHOP signaling pathway in vascular endothelial cells.
METHODSThe effects of ox-LDL on PERK and p-eIF2α protein expression of primary human umbilical vein endothelial cells (HUVECs) were investigated by Western blot analysis. PERK gene silencing and selective eIF2α phosphatase inhibitor, salubrinal were used to inhibit the process of ox-LDL induced endothelial cell apoptosis, caspase-3 activity, and CHOP mRNA level.
RESULTSOx-LDL treatment significantly increased the expression of PERK, PERK-mediated inactivation of eIF2α phosphorylation, and the expression of CHOP, as well as the caspase-3 activity and apoptosis. The effects of ox-LDL were markedly decreased by knocking down PERK with stable transduction of lentiviral shRNA or by selective eIF2α phosphatase inhibitor, salubrinal.
CONCLUSIONThis study provides the first evidence that ox-LDL induces apoptosis in vascular endothelial cells mediated largely via the PERK/eIF2α/CHOP ER-stress pathway. It adds new insights into the molecular mechanisms underlying the pathogenesis and progression of atherosclerosis.
Apoptosis ; Endoplasmic Reticulum Stress ; Eukaryotic Initiation Factor-2 ; genetics ; metabolism ; Human Umbilical Vein Endothelial Cells ; metabolism ; Humans ; Lipoproteins, LDL ; genetics ; metabolism ; Signal Transduction ; Transcription Factor CHOP ; genetics ; metabolism ; eIF-2 Kinase ; genetics ; metabolism
5.Common variants in PERK, JNK, BIP and XBP1 genes are associated with the risk of prediabetes or diabetes-related phenotypes in a Chinese population.
Nan FENG ; Xiaowei MA ; Xiaowei WEI ; Junqing ZHANG ; Aimei DONG ; Mengmeng JIN ; Hong ZHANG ; Xiaohui GUO
Chinese Medical Journal 2014;127(13):2438-2444
BACKGROUNDPrediabetes is an early stage of β-cell dysfunction presenting as insulin resistance. Evidences suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis of type 2 diabetes mellitus and prediabetes. In a Chinese population with prediabetes, we investigated single nucleotide polymorphisms (SNPs) in the genes of PERK, JNK, XBP1, BIP and CHOP which encode molecular proteins involved in ER stress pathways.
METHODSNine SNPs at the PERK, JNK, XBP1, BIP and CHOP loci were genotyped by mass spectrometry in 1 448 unrelated individuals. By using a 75 g oral glucose tolerance test (OGTT), 828 subjects were diagnosed as prediabetes and 620 subjects aged 55 years and over as normal controls based on WHO diagnostic criteria (1999) for diabetes mellitus.
RESULTSThe allele C of SNP rs867529 at PERK locus was a risk factor for prediabetes, with the carriers of C allele genotype at a higher risk of prediabetes compared to non-carriers (OR = 1.279, 95% CI: 1.013-1.614, P = 0.039, after adjustment for age, sex and body mass index (BMI). The SNPs rs6750998 at PERK locus was associated with homeostasis model assessments of insulin resistance (HOMA-IR) (P = 0.019), and rs17037621 with BMI (P = 0.044). The allele G of SNP rs10986663 in BIP gene was associated with a decreased risk of prediabetes (OR = 0.699, 95% CI: 0.539-0.907, P = 0.007). The SNP rs2076431 in JNK gene was associated with fasting plasma glucose levels (P = 0.006) and waist-hip ratios (P = 0.019). The SNP rs2239815 in XBP1 gene was associated with 2-hour plasma glucose levels after 75 g oral glucose load (P = 0.048) in the observed population.
CONCLUSIONCommon variants at PERK and BIP loci contributed to the risk of prediabetes, and the genetic variations in JNK and XBP1 genes are associated with diabetes-related clinical parameters in this Chinese population.
Aged ; DNA-Binding Proteins ; genetics ; Diabetes Mellitus, Type 2 ; genetics ; Female ; Genotype ; Humans ; MAP Kinase Kinase 4 ; genetics ; Male ; Middle Aged ; Polymorphism, Single Nucleotide ; genetics ; Prediabetic State ; genetics ; Regulatory Factor X Transcription Factors ; Transcription Factor CHOP ; genetics ; Transcription Factors ; genetics ; X-Box Binding Protein 1 ; eIF-2 Kinase ; genetics
6.The effects of the cadmium chloride on the DNA damage and the expression level of gadd gene in HepG2 cell line.
Rong ZHANG ; Yu-Jie NIU ; Zhen-Jie ZHANG ; Qing CHEN ; Hui-Cai GUO ; Juan ZHAO ; Yao LI ; Long-Gang FAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2011;29(6):409-412
OBJECTIVETo investigate the effects of the cadmium chloride on the DNA damage and the expression of the gadd153 and gadd45beta promoter and mRNA in HepG2 cells.
METHODSDNA damage induced by cadmium chloride was detected by comet assay. The plasmids (pGADD153-Luc and pG45-Luc) containing DNA damage and repair inducible gene 153 and 45 (gadd153 and gadd45beta) promoter and luciferase and gadd45beta reporter gene were constructed. The activity of gadd153 and gadd45beta promoter were represented by the luciferase activity, the inducible luciferase activities was detected by bioluminescence. The expression of gadd153 and gadd45beta mRNA was detected by RT-PCR.
RESULTSThe results of comet assay indicated that Olive Tail Moment induced by the cadmium chloride increased significantly at the dose of 100, 300 micromol/L, compared with the control (P < 0.05). The luciferase activity analysis showed that the expression levels of gadd153 promoter increased significantly in 1, 5, 10 micromol/L treatment group, compared with the control (P < 0.05). The expression levels of gadd45beta promoter in 5, 10 micromol/L treatment group were significantly higher than that in control group (P < 0.05). The expression levels of gadd153 mRNA induced by cadmium chloride at the doses of 1, 5, 10 micromol/L and the expression levels of gadd45beta mRNA induced at the doses of 5, 10 micromol/L were significantly higher than thoae in control group (P < 0.05).
CONCLUSIONThe cadmium chloride can induce the DNA damage and increase the expression levels of the gadd153 and gadd45beta promoters in HepG2 cells.
Antigens, Differentiation ; genetics ; Cadmium Chloride ; toxicity ; Comet Assay ; DNA Damage ; drug effects ; Genes, Reporter ; Hep G2 Cells ; Humans ; Plasmids ; Promoter Regions, Genetic ; RNA, Messenger ; genetics ; Transcription Factor CHOP ; genetics
7.Effect of curcumin in inducing apoptosis of MDA-MB-213 cells by activating endoplasmic reticulum stress.
Ri HONG ; Yong-Qiang WU ; Yue WU
China Journal of Chinese Materia Medica 2014;39(8):1495-1498
OBJECTIVETo explore the possible mechanism of curcumin in inducing the apoptosis of breast cancer cell MDA-MB-231.
METHODCurcumin of different concentrations at 0, 10 25, 50, 100, 150, 200 micromol x L(-1) were used to intervene breast cancer cells MDA-MB-231 for 24 hours. MTT was used to observe its effect on the proliferation of breast cancer cells. The flow cytometry was used to detect its effect on the cell apoptosis. The real-time quantitative PCR and Western blot was used to assess the expression levels of GRP78 and CHOP in breast cancer cells.
RESULTCurcumin could inhibit the proliferative ability of breast cancer cells by inducing them in a concentration-dependent manner. Curcumin could significantly increase the expression levels of GRP78 and CHOP in breast cancer cells.
CONCLUSIONCurcumin could induce the apoptosis of breast cancer cells MDA-MB-231 by activating endoplasmic reticulum stress.
Apoptosis ; drug effects ; Breast Neoplasms ; drug therapy ; genetics ; metabolism ; physiopathology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Curcumin ; pharmacology ; Drugs, Chinese Herbal ; pharmacology ; Endoplasmic Reticulum Stress ; drug effects ; Female ; Heat-Shock Proteins ; genetics ; metabolism ; Humans ; Transcription Factor CHOP ; genetics ; metabolism
8.Inhibitory effect of caveolin-1 on endoplasmic reticulum stress-induced apoptosis in macrophages via p38 MAPK pathway.
Wen YUE ; Shu-Tong YAO ; Xiao ZHOU ; Yan-Hong SI ; Hui SANG ; Jia-Fu WANG ; Zhan-Ping SHANG
Acta Physiologica Sinica 2012;64(2):149-154
Endoplasmic reticulum (ER) stress occurs in macrophage-rich areas of advanced atherosclerotic lesions and contributes to macrophage apoptosis and subsequent plaque necrosis. The purpose of the present study was to investigate the effects of caveolin-1 (Cav-1) on ER stress-induced apoptosis in cultured macrophages and the underlying mechanisms. RAW264.7 cells were incubated with thapsigargin (TG) to establish ER stress model. And Cav-1 expression was detected by Western blot. After being pretreated with filipin(III), a caveolae inhibitor, RAW264.7 cells were assayed with flow cytometry and confocal laser scanning microscopy to detect cell apoptosis. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation and C/EBP homologous protein (CHOP) expression were detected with Western blot. The results showed that Cav-1 expression was markedly increased at early stage of TG treatment (P < 0.05) and then decreased with prolonged or high dose TG treatments. The increasing of Cav-1 expression induced by TG in RAW264.7 cells was abolished under inhibition of caveolae by filipin(III) (P < 0.05). The effect of TG on apoptosis of RAW264.7 cells was further augmented after pretreatment with filipin(III) (P < 0.05). Western blotting showed that MAPK phosphorylation induced by TG was inhibited by filipin(III) in RAW264.7 cells (P < 0.05), whereas CHOP remained unchanged (P > 0.05). These results suggest that Cav-1 may play a critical role in suppressing ER stress-induced macrophages apoptosis in vitro, and one of the mechanisms may be correlated with the activation of p38 MAPK prosurvival pathway.
Animals
;
Apoptosis
;
drug effects
;
Caveolin 1
;
genetics
;
metabolism
;
Cell Line
;
Endoplasmic Reticulum Stress
;
physiology
;
Filipin
;
pharmacology
;
MAP Kinase Signaling System
;
Macrophages
;
cytology
;
drug effects
;
Mice
;
Thapsigargin
;
pharmacology
;
Transcription Factor CHOP
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
9.Involvement of GADD153 and cardiac ankyrin repeat protein in cardiac ischemia-reperfusion injury.
Mi Jin LEE ; Yong Keun KWAK ; Kyung Ran YOU ; Byung Ho LEE ; Dae Ghon KIM
Experimental & Molecular Medicine 2009;41(4):243-252
Oxidative stress is critical for causing cardiac injuries during ischemia-reperfusion (IR), yet the molecular mechanism for this remains unclear. In the present study, we observe that hypoxia and reoxygenation, a component of ischemia, effectively induces apoptosis in the cardiac myocytes from neonatal rats and it concomitantly leads to induction of GADD153, an apoptosis-related gene. Furthermore, IR injury of rat heart showed a GADD153 overexpression in the ischemic area where the TUNEL reaction was positive. A downregulation of cardiac ankyrin repeat protein (CARP) was also observed in this ischemic area. Promoter deletion and reporter analysis revealed that hypoxia transcriptionally activates a GADD153 promoter through the AP-1 element in neonatal cardiomyocytes. Ectopic overexpression of GADD153 resulted in the downregulation of CARP expression. Accordingly, the induction of GADD153 mRNA were followed by the CARP down-regulation in an in vivo rat coronary ischemia/reperfusion injury model. These results suggest that GADD153 over-expression and the resulting downregulation of CARP may have causative roles in apoptotic cell death during cardiac IR injury.
Animals
;
Animals, Newborn
;
Anoxia
;
Apoptosis/physiology
;
Cells, Cultured
;
Humans
;
Male
;
*Myocardial Reperfusion Injury/metabolism/pathology
;
*Myocardium/metabolism/pathology
;
Myocytes, Cardiac/cytology/metabolism
;
Nuclear Proteins/genetics/*metabolism
;
Promoter Regions, Genetic
;
Rats
;
Rats, Sprague-Dawley
;
Repressor Proteins/genetics/*metabolism
;
Transcription Factor AP-1/genetics/metabolism
;
Transcription Factor CHOP/genetics/*metabolism
10.The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability.
Kentaro ITO ; Akinori TAKAHASHI ; Masahiro MORITA ; Toru SUZUKI ; Tadashi YAMAMOTO
Protein & Cell 2011;2(9):755-763
The human CCR4-NOT deadenylase complex consists of at least nine enzymatic and non-enzymatic subunits. Accumulating evidence suggests that the non-enzymatic subunits are involved in the regulation of mRNA deadenylation, although their precise roles remain to be established. In this study, we addressed the function of the CNOT1 subunit by depleting its expression in HeLa cells. Flow cytometric analysis revealed that the sub G(1) fraction was increased in CNOT1-depleted cells. Virtually, the same level of the sub G1 fraction was seen when cells were treated with a mixture of siRNAs targeted against all enzymatic subunits, suggesting that CNOT1 depletion induces apoptosis by destroying the CCR4-NOT-associated deadenylase activity. Further analysis revealed that CNOT1 depletion leads to a reduction in the amount of other CCR4-NOT subunits. Importantly, the specific activity of the CNOT6L immunoprecipitates-associated deadenylase from CNOT1-depleted cells was less than that from control cells. The formation of P-bodies, where mRNA decay is reported to take place, was largely suppressed in CNOT1-depleted cells. Therefore, CNOT1 has an important role in exhibiting enzymatic activity of the CCR4-NOT complex, and thus is critical in control of mRNA deadenylation and mRNA decay. We further showed that CNOT1 depletion enhanced CHOP mRNA levels and activated caspase-4, which is associated with endoplasmic reticulum ER stress-induced apoptosis. Taken together, CNOT1 depletion structurally and functionally deteriorates the CCR4-NOTcomplex and induces stabilization of mRNAs, which results in the increment of translation causing ER stress-mediated apoptosis. We conclude that CNOT1 contributes to cell viability by securing the activity of the CCR4-NOT deadenylase.
Apoptosis
;
Caspases, Initiator
;
genetics
;
metabolism
;
Cell Survival
;
Endoplasmic Reticulum
;
enzymology
;
Enzyme Activation
;
Flow Cytometry
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Protein Subunits
;
genetics
;
metabolism
;
RNA Stability
;
RNA, Messenger
;
analysis
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Ribonucleases
;
metabolism
;
Stress, Physiological
;
Transcription Factor CHOP
;
genetics
;
metabolism
;
Transcription Factors
;
genetics
;
metabolism
;
Transfection