1.Transcriptional Regulation of Proteoglycans and Glycosaminoglycan Chain-synthesizing Glycosyltransferases by UV Irradiation in Cultured Human Dermal Fibroblasts.
Jeong Eun SHIN ; Jang Hee OH ; Yeon Kyung KIM ; Ji Yong JUNG ; Jin Ho CHUNG
Journal of Korean Medical Science 2011;26(3):417-424
Various kinds of glycosaminoglycans (GAGs) and proteoglycans (PGs) have been known to be involved in structural and space-filling functions, as well as many physiological regulations in skin. To investigate ultraviolet (UV) radiation-mediated regulation of GAGs and PGs in cultured human dermal fibroblasts, transcriptional changes of many types of PGs and GAG chain-synthesizing enzymes at 18 hr after 75 mJ/cm2 of UV irradiation were examined using quantitative real-time polymerase chain reaction methods. Hyaluronic acid synthase (HAS)-1, -2, and -3 and hyaluronidase-2 mRNA expressions were significantly increased by UV irradiation. Expressions of lumican, fibromodulin, osteoglycin, syndecan-2, perlecan, agrin, versican, decorin, and biglycan were significantly decreased by UV irradiation, while syndecan-1 was increased. Expressions of GAG chain-synthesizing glycosyltransferases, xylosyltransferase-1, beta1,3-glucuronyltransferase-1, beta1,4-galactosyltransferase-2, -4, exostosin-1, chondroitin polymerizing factor, and chondroitin sulfate synthase-3 were significantly reduced, whereas those of beta1,3-galactosyltransferase-6, beta1,4-galactosyltransferase-3, -7, beta-1,3-N-acetylglucosaminyltran sferase-2, and -7 were increased by UV irradiation. Heparanase-1 mRNA expression was increased, but that of heparanase-2 was reduced by UV irradiation. Time-course investigation of representative genes showed consistent results. In conclusion, UV irradiation may increase hyaluronic acid production through HAS induction, and decrease other GAG productions through downregulation of PG core proteins and GAG chain-synthesizing glycosyltransferases in cultured human dermal fibroblasts.
Cell Line
;
Fibroblasts/metabolism/radiation effects
;
Gene Expression Regulation/radiation effects
;
Glucuronosyltransferase/genetics/radiation effects
;
Glycosaminoglycans/*biosynthesis/chemistry
;
Glycosyltransferases/genetics/*metabolism
;
Humans
;
Hyaluronic Acid/biosynthesis
;
Hyaluronoglucosaminidase/genetics/radiation effects
;
Polymerase Chain Reaction
;
Proteoglycans/*biosynthesis/genetics/radiation effects
;
RNA, Messenger/analysis/genetics
;
Skin/*metabolism/radiation effects
;
Transcription, Genetic/radiation effects
;
*Ultraviolet Rays
2.The effect of extremely low frequency magnetic fields on cytochrome oxidase subunit 1 mRNA transcription.
Tao ZHONG ; Qing CHEN ; Ruiying WU ; Gengdong YAO ; Deqiang LU ; Huai CHIANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2002;20(4):249-251
OBJECTIVETo clone and identify MF-1 gene which responded to extremely low frequency magnetic fields(ELF MF) in Daudi cells, and explore the response universality of MF-1 gene in several MF-sensitive cell lines, so as to provide experimental basis for revealing the mechanism of biological effects induced by magnetic field.
METHODSThe DNA fragment of MF-1 was cloned and sequenced; the mRNA level of MF-1 gene were analysed in MF-sensitive cell lines(HL-60, L1210 and CHL) by Northern blot after these cells being treated with 0.1 mT and 0.8 mT MF for 20 minutes and 24 hours, respectively.
RESULTSThe MF-1 cDNA sequence had 100% homology with cytochrome oxidase subunit 1 gene(CO1) by searching Gene Bank database; the transcription of CO1 in HL-60, L1210 and CHL cell lines which exposed to 0.1 mT and 0.8 mT MF for 20 minutes were significantly lower(0.38 +/- 0.12 and 0.37 +/- 0.04) than that of control(0.58 +/- 0.12) and so did for 24 hours exposure(0.46 +/- 0.09 and 0.45 +/- 0.09 vs 0.65 +/- 0.06) (P < 0.05).
CONCLUSIONCO1 is a MF-responsive gene. Cytochrome oxidase activity may be affected through low level of CO1 transcription by magnetic fields, thus induce bioeffects in organisms.
Animals ; Cricetinae ; Electron Transport Complex IV ; genetics ; metabolism ; radiation effects ; HL-60 Cells ; Humans ; Leukemia L1210 ; Magnetics ; Mice ; Protein Subunits ; RNA, Messenger ; analysis ; Transcription, Genetic ; radiation effects
3.Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage.
Sheng-Xin CHANG ; Chu PU ; Rong-Zhan GUAN ; Min PU ; Zhi-Gang XU
Journal of Zhejiang University. Science. B 2018;19(8):581-595
Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. "Zhongshuang 11") leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (|log2(fold change)|≥1, q<0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and 0R:100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.
Brassica napus/radiation effects*
;
Brassica rapa/radiation effects*
;
Carbon/chemistry*
;
Chloroplasts/radiation effects*
;
Computational Biology
;
Electrophoresis, Gel, Two-Dimensional
;
Gene Expression Regulation, Plant/radiation effects*
;
Image Processing, Computer-Assisted
;
Light
;
Mass Spectrometry
;
Metabolic Networks and Pathways
;
Nitrogen/chemistry*
;
Photons
;
Photosystem II Protein Complex/genetics*
;
Plant Leaves/radiation effects*
;
Plant Proteins/genetics*
;
Proteome
;
Ribosomes
;
Transcription, Genetic
;
Transcriptome
4.NF-kappa B decoy potentiates the effects of radiation on vascular smooth muscle cells by enhancing apoptosis.
Shu Ying ZHANG ; Kyung Woo PARK ; Seil OH ; Hyun Ju CHO ; Hyun Jai CHO ; Jin Shik PARK ; Young Seok CHO ; Bon Kwon KOO ; In Ho CHAE ; Dong Joo CHOI ; Hyo Soo KIM ; Myoung Mook LEE
Experimental & Molecular Medicine 2005;37(1):18-26
NF-kappa B promotes cell survival against external stress such as radiation. We examined whether NF-kappa B decoy transfection enhances the antiproliferative effects of radiation on vascular smooth muscle cells (VSMCs) in vitro. The irradiation induced activation or nuclear translocation of NF-kappa B p65 in VSMCs was confirmed by immunofluorescence. NF-kB decoy transfection resulted in inhibition of the radiation-induced NF-kB activation in VSMCs and the subsequent reduction of transcription and translocation of ICAM, iNOS, and TNF-alpha, downstream molecules under the control of NF-kappa B. By using MTT assay, NF-kappa B decoy augmented the antiproliferative effects of radiation, where the effect of low dose radiation (2 and 8-Gy) of the cells transfected with NF-kappa B decoy was equivalent to the high dose (16-Gy) irradiated non-transfected cells at 48 h after irradiation: 1.06+/-0.16, 1.11+/-0.22, 1.20+/-0.25, respectively. The decrease in proliferation and survival of the radiation treated cells by flow cytometry analysis showed that NF-kappa B inhibition did not show any additive effects on the cell cycle of the irradiated VSMCs, while apoptosis was significantly increased after NF-kappa B decoy transfection in the irradiated VSMCs (apoptosis fraction: 13.33+/-2.08% vs. 26.29+/-7.43%, for radiation only vs. radiation+NF-kappa B decoy transfection, P < 0.05). In addition, at 48 h, NF-kappa B decoy transfection dose dependently (10 mM vs. 20 mM) inhibited proliferation of 16Gy-irradiated VSMCs, and showed greater antiproliferative efficacy than 100 mM sulfasalazine, a specific NF-kappa B inhibitor. These results indicate that NF-kappa B inhibition reduces proliferation and survival of irradiated VSMCs, likely by increased apoptosis rather than additive cell cycle arrest and suggest the possibility of adjunctive gene therapy using NF-kappa B decoy to improve efficacy and to decrease the adverse effects of intracoronary radiation therapy.
Animals
;
Aorta/cytology/radiation effects
;
*Apoptosis
;
Cell Cycle/physiology/radiation effects
;
Cell Proliferation/radiation effects
;
Cells, Cultured
;
Gamma Rays
;
Intercellular Adhesion Molecule-1/metabolism
;
Male
;
Muscle, Smooth, Vascular/cytology/physiology/*radiation effects
;
Myocytes, Smooth Muscle/cytology/radiation effects
;
NF-kappa B/*antagonists & inhibitors/metabolism
;
Nitric-Oxide Synthase/metabolism
;
Protein Transport
;
Rats
;
Rats, Sprague-Dawley
;
Research Support, Non-U.S. Gov't
;
Transcription, Genetic
;
Transfection
;
Tumor Necrosis Factor-alpha/metabolism