1.Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation.
Ying WANG ; Jixian WANG ; Qing-Fang ZHANG ; Ke-Wei XIAO ; Liang WANG ; Qing-Ping YU ; Qing XIE ; Mu-Ming POO ; Yunqing WEN
Neuroscience Bulletin 2023;39(1):69-82
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Transcranial Direct Current Stimulation/methods*
;
Motor Cortex/physiology*
;
Neurons
;
Transcranial Magnetic Stimulation
2.Research advances in neuromodulation techniques for blood glucose regulation and diabetes intervention.
Journal of Biomedical Engineering 2023;40(6):1227-1234
Diabetes and its complications that seriously threaten the health and life of human, has become a public health problem of global concern. Glycemic control remains a major focus in the treatment and management of patients with diabetes. The traditional lifestyle interventions, drug therapies, and surgeries have benefited many patients with diabetes. However, due to problems such as poor patient compliance, drug side effects, and limited surgical indications, there are still patients who fail to effectively control their blood glucose levels. With the development of bioelectronic medicine, neuromodulation techniques have shown great potential in the field of glycemic control and diabetes intervention with its unique advantages. This paper mainly reviewed the research advances and latest achievements of neuromodulation technologies such as peripheral nerve electrical stimulation, ultrasound neuromodulation, and optogenetics in blood glucose regulation and diabetes intervention, analyzed the existing problems and presented prospects for the future development trend to promote clinical research and application of neuromodulation technologies in the treatment of diabetes.
Humans
;
Blood Glucose
;
Transcranial Magnetic Stimulation/methods*
;
Transcranial Direct Current Stimulation/methods*
;
Transcutaneous Electric Nerve Stimulation
;
Diabetes Mellitus/therapy*
3.Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques.
Nicole PETER ; Tobias KLEINJUNG
Journal of Zhejiang University. Science. B 2019;20(2):116-130
Tinnitus is defined as a perception of sound without any external sound source. Chronic tinnitus is a frequent condition that can affect the quality of life. So far, no causal cure for tinnitus has been documented, and most pharmacologic and psychosomatic treatment modalities aim to diminish tinnitus' impact on the quality of life. Neuromodulation, a novel therapeutic modality, which aims at alternating nerve activity through a targeted delivery of a stimulus, has emerged as a potential option in tinnitus treatment. This review provides a brief overview of the current neuromodulation techniques as tinnitus treatment options. The main intention is to provide updated knowledge especially for medical professionals counselling tinnitus patients in this emerging field of medicine. Non-invasive methods such as repetitive transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and transcutaneous vagus nerve stimulation were included, as well as invasive methods such as implanted vagus nerve stimulation and invasive brain stimulation. Some of these neuromodulation techniques revealed promising results; nevertheless, further research is needed, especially regarding the pathophysiological principle as to how these neuromodulation techniques work and what neuronal change they induce. Various studies suggest that individually different brain states and networks are involved in the generation and perception of tinnitus. Therefore, in the future, individually tailored neuromodulation strategies could be a promising approach in tinnitus treatment for achieving a more substantial and longer lasting improvement of complaints.
Deep Brain Stimulation/methods*
;
Humans
;
Neurofeedback/methods*
;
Tinnitus/therapy*
;
Transcranial Direct Current Stimulation/methods*
;
Transcranial Magnetic Stimulation/methods*
;
Vagus Nerve Stimulation/methods*
4.Status of Noninvasive Brain Stimulation in the Therapy of Alzheimer's Disease.
Chinese Medical Journal 2018;131(24):2899-2903
5.Simulation study of force and temperature field during transcranial magnetic stimulation application working with magnetic resonance imaging simultaneously.
Journal of Biomedical Engineering 2022;39(4):685-693
Currently, transcranial magnetic stimulation (TMS) has been widely used in the treatment of depression, Parkinson's disease and other neurological diseases. To be able to monitor the brain's internal activity during TMS in real time and achieve better treatment outcomes, the researchers proposed combining TMS with neuroimaging methods such as magnetic resonance imaging (MRI), both of which use Tesla-level magnetic fields. However, the combination of strong current, large magnetic field and small size is likely to bring physical concerns which can lead to mechanical and thermal instability. In this paper, the MRI static magnetic field, the TMS coil and human head model were built according to the actual situations. Through the coupling of the magnetic field and the heat transfer module in the finite element simulation software COMSOL, the force and temperature of the TMS coil and head were obtained when the TMS was used in combination with MRI (TMS-MRI technology). The results showed that in a 3 T MRI environment, the maximum force density on the coil could reach 2.51 × 109 N/m3. Both the direction of the external magnetic field and the current direction in the coil affected the force distributions. The closer to the boundary of the external magnetic field, the greater the force. The magnetic field generated by the coil during TMS treatment increased the temperature of the brain tissue by about 0.16 °C, and the presence of the MRI static magnetic field did not cause additional thermal effects. The results of this paper can provide a reference for the development of the use guidelines and safety guidelines of TMS-MRI technology.
Brain/physiology*
;
Humans
;
Magnetic Fields
;
Magnetic Resonance Imaging/methods*
;
Temperature
;
Transcranial Magnetic Stimulation/methods*
6.Research and application advances in rehabilitation assessment of stroke.
Kezhou LIU ; Mengjie YIN ; Zhengting CAI
Journal of Zhejiang University. Science. B 2022;23(8):625-641
Stroke has a high incidence and disability rate, and rehabilitation is an effective means to reduce the disability rate of patients. To systematize rehabilitation assessment, which is the foundation for rehabilitation therapy, we summarize the assessment methods commonly used in research and clinical applications, including the various types of stroke rehabilitation scales and their applicability, and related biomedical detection technologies, including surface electromyography (sEMG), motion analysis systems, transcranial magnetic stimulation (TMS), magnetic resonance imaging (MRI), and combinations of different techniques. We also introduce some assessment techniques that are still in the experimental phase, such as the prospective application of artificial intelligence (AI) with optical correlation tomography (OCT) in stroke rehabilitation. This review provides a useful bibliography for the assessment of not only the severity of stroke injury, but also the therapeutic effects of stroke rehabilitation, and establishes a solid base for the future development of stroke rehabilitation skills.
Artificial Intelligence
;
Humans
;
Magnetic Resonance Imaging
;
Stroke
;
Stroke Rehabilitation/methods*
;
Transcranial Magnetic Stimulation/methods*
7.The Clinical Applications and the Electroencephalogram Effects of Repeated Transcranial Magnetic Stimulation.
Kyung Mook CHOI ; Dongkyoo SHIN ; Jeong Ho CHAE
Korean Journal of Psychopharmacology 2013;24(4):160-171
Repetitive transcranial magnetic stimulation (rTMS) has been applied in a variety of diseases due to the clinical effects through the plasticity of the brain. The effects of TMS appear differently depending on the methods of stimulation. Single pulse TMS depolarizes and discharges nerves temporally under the cortex areas stimulated, whereas rTMS induces long-lasting effects of nerves stimulated. According to the intensity of stimulation, the direction of coil and stimulation frequency, rTMS can increase or decrease the excitability of the corticospinal tract and has been verified as techniques to treat a variety of neuropsychiatric disorders. In rTMS studies using electroencephalogram (EEG), changes in brain waves have been measured before and after TMS or simultaneously during TMS. In these studies, low frequency (< or =1 Hz) rTMS, high-frequency (5-25 Hz) rTMS, theta burst stimulation, paired association stimulation have been studied and somatosensory, visual, cognitive, and motor potentials and oscillatory activities were measured and compared before and after TMS. Combined with neurophysiological and, neuroimaging methods, TMS techniques could be used to study cortical excitability, cortical inhibition and excitement, and the cortical plasticity of local areas and neural network. In particular, because simultaneous measurement during TMS as well as measurement before and after TMS is possible, EEG could be very useful to determine the effects of TMS compared to other brain imaging tools.
Brain
;
Brain Waves
;
Electroencephalography*
;
Methods
;
Neuroimaging
;
Plastics
;
Pyramidal Tracts
;
Transcranial Magnetic Stimulation*
8.Effects of Repetitive High Frequency Motor Cortex Transcranial Magnetic Stimulation and Cortical Disinhibition in Diabetic Patients with Neuropathic Pain: A Case Control Study
Yong HAN ; Chan Ho LEE ; Kyung Wan MIN ; Kyung Ah HAN ; Hyo Seon CHOI ; Youn Joo KANG
Clinical Pain 2019;18(1):1-7
OBJECTIVE: To investigate the cortical disinhibition in diabetic patients with neuropathic pain and without pain. In addition, we assessed the cortical disinhibition and pain relief after repetitive transcranial magnetic stimulation (rTMS).METHOD: We recruited diabetic patients with neuropathic pain (n = 15) and without pain (n = 15). We compared the TMS parameters such as motor evoked potential (MEP) amplitude, cortical silent period (CSP), intracortical inhibition (ICI %) and intracortical facilitation (ICF %) between two groups. Moreover, we evaluated the changes of pain and TMS parameters after five consecutive high frequency (10 Hz) rTMS sessions in diabetic patients with neuropathic pain. The neuropathic pain intensity (visual analog scale) and TMS parameters were assessed on pre-rTMS, post-rTMS 1day, and post-rTMS 5 day.RESULTS: The comparison of the CSP, ICI % revealed significant differences between two groups (p<0.01). After rTMS sessions, the decrease in pain intensity across the three time points revealed a pattern of significant differences (p<0.01). The change of CSP and ICI % across the three test points revealed a pattern of significant differences (p<0.01). The ICI % revealed immediate increase after first rTMS application and significant increase after five rTMS application (p<0.01) in diabetic patients with neuropathic pain. The MEP amplitude and ICF % did not reveal any significant changes.CONCLUSION: Our findings demonstrate that cortical inhibition was decreased in diabetic patients with neuropathic pain compared with patients without pain. Furthermore, we also identified that five daily rTMS sessions restored the defective intracortical inhibition which related to improvement of neuropathic pain in diabetic patients.
Case-Control Studies
;
Diabetic Neuropathies
;
Evoked Potentials, Motor
;
Humans
;
Methods
;
Motor Cortex
;
Neuralgia
;
Transcranial Magnetic Stimulation
9.Study on after-effect of electroacupuncture with different time intervals on corticospinal excitability in primary motor cortex.
Meng-Meng XIE ; Zi-Zhen CHEN ; Wei-Li CHENG ; Jian-Peng HUANG ; Neng-Gui XU ; Jian-Hua LIU
Chinese Acupuncture & Moxibustion 2023;43(11):1239-1245
OBJECTIVES:
To compare the effects of electroacupuncture (EA) with different time intervals on corticospinal excitability of the primary motor cortex (M1) and the upper limb motor function in healthy subjects and observe the after-effect rule of acupuncture.
METHODS:
Self-comparison before and after intervention design was adopted. Fifteen healthy subjects were included and all of them received three stages of trial observation, namely EA0 group (received one session of EA), EA6h group (received two sessions of EA within 1 day, with an interval of 6 h) and EA48h group (received two sessions of EA within 3 days, with an interval of 48 h). The washout period among stages was 1 week. In each group, the needles were inserted perpendicularly at Hegu (LI 4) on the left side, 23 mm in depth and at a non-acupoint, 0.5 cm nearby to the left side of Hegu (LI 4), separately. Han's acupoint nerve stimulator (HANS-200A) was attached to these two needles, with continuous wave and the frequency of 2 Hz. The stimulation intensity was exerted higher than the exercise threshold (local muscle twitching was visible, and pain was tolerable by healthy subjects, 1-2 mA ). The needles were retained for 30 min. Using the single pulse mode of transcranial magnetic stimulation (TMS) technique, before the first session of EA (T0) and at the moment (T1), in 2 h (T2) and 24 h (T3) after the end of the last session of EA, on the left first dorsal interosseous muscle, the amplitude, latency (LAT), resting motor threshold (rMT) of motor evoked potentials (MEPs) and the completion time of grooved pegboard test (GPT) were detected. Besides, in the EA6h group, TMS was adopted to detect the excitability of M1 (amplitude, LAT and rMT of MEPs) before the last session of EA (T0*).
RESULTS:
The amplitude of MEPs at T1 and T2 in the EA0 group, at T0* in the EA6h group and at T1, T2 and T3 in the EA48h group was higher when compared with the value at T0 in each group separately (P<0.001). At T1, the amplitude of MEPs in the EA0 group and the EA48h group was higher than that in the EA6h group (P<0.001, P<0.01); at T2, it was higher in the EA0 group when compared with that in the EA6h group (P<0.01); at T3, the amplitude in the EA0 group and the EA6h group was lower than that of the EA48h group (P<0.001). The LAT at T1 was shorter than that at T0 in the three groups (P<0.05), and the changes were not obvious at the rest time points compared with that at T0 (P > 0.05). The GPT completion time of healthy subjects in the EA0 group and the EA48h group at T1, T2 and T3 was reduced in comparison with that at T0 (P<0.001). The completion time at T3 was shorter than that at T0 in the EA6h group (P<0.05); at T2, it was reduced in the EA48h group when compared with that of the EA6h group (P<0.05). There were no significant differences in rMT among the three groups and within each group (P>0.05).
CONCLUSIONS
Under physiological conditions, EA has obvious after-effect on corticospinal excitability and upper limb motor function. The short-term interval protocol (6 h) blocks the after-effect of EA to a certain extent, while the long-term interval protocol (48 h) prolongs the after-effect of EA.
Humans
;
Electroacupuncture
;
Motor Cortex/physiology*
;
Transcranial Magnetic Stimulation/methods*
;
Upper Extremity
;
Exercise
;
Muscle, Skeletal/physiology*
10.Applications of magnetic stimulation in biomedicine.
Journal of Biomedical Engineering 2007;24(4):950-953
Magnetic stimulation as an efficient and non-invasive technique has been applied broadly in clinical practice. It is mostly used in determination of nerve centre motor conduct and evaluation of motor cortex excitability; in inspection of central nervous system function by measuring peripheral nerve conduct; and in study of pallium nerve distribution. These are conducted in an attempt to control brain activity and provide new methods for the diagnosis and treatment of some brain diseases. This paper reviews the physical theory and functional mechanism of magnetic stimulation, as well as the applications of magnetic stimulation in biomedical examination and treatment.
Electromagnetic Fields
;
Humans
;
Magnetic Field Therapy
;
methods
;
trends
;
Movement Disorders
;
diagnosis
;
physiopathology
;
therapy
;
Transcranial Magnetic Stimulation
;
methods
;
trends