1.Transcranial Direct Current Stimulation-Psychiatric Application and Its Current Status.
Journal of the Korean Society of Biological Psychiatry 2017;24(4):175-187
Transcranial direct current stimulation (TDCS) is a clinically safe and effective method of delivering weak electric current to modulate cortical activities. And based on the cumulating scientific evidences, the method is recommended to treat major depressive disorder (MDD) and other psychiatric disorders. In this paper, we review the development of TDCS in the rising field of neuromodulation. Then with suggested biochemical and physical mechanism of TDCS, we summarize the reported cases of using TDCS to alleviate major neuropsychiatric disorders. And, in particular, the treatment of MDD is highlighted as an illustrative example of using TDCS. We discuss here the therapeutic potentials of this method in psychiatry. And in closing remarks, we evaluate the current technical limitations and suggest the future directions of this method in both the clinical and research aspects.
Depressive Disorder, Major
;
Methods
;
Transcranial Direct Current Stimulation
2.Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation.
Ying WANG ; Jixian WANG ; Qing-Fang ZHANG ; Ke-Wei XIAO ; Liang WANG ; Qing-Ping YU ; Qing XIE ; Mu-Ming POO ; Yunqing WEN
Neuroscience Bulletin 2023;39(1):69-82
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Transcranial Direct Current Stimulation/methods*
;
Motor Cortex/physiology*
;
Neurons
;
Transcranial Magnetic Stimulation
3.Research progress on transcranial electrical stimulation for deep brain stimulation.
Weiyu MENG ; Cheng ZHANG ; Changzhe WU ; Guanghao ZHANG ; Xiaolin HUO
Journal of Biomedical Engineering 2023;40(5):1005-1011
Transcranial electric stimulation (TES) is a non-invasive, economical, and well-tolerated neuromodulation technique. However, traditional TES is a whole-brain stimulation with a small current, which cannot satisfy the need for effectively focused stimulation of deep brain areas in clinical treatment. With the deepening of the clinical application of TES, researchers have constantly investigated new methods for deeper, more intense, and more focused stimulation, especially multi-electrode stimulation represented by high-precision TES and temporal interference stimulation. This paper reviews the stimulation optimization schemes of TES in recent years and further analyzes the characteristics and limitations of existing stimulation methods, aiming to provide a reference for related clinical applications and guide the following research on TES. In addition, this paper proposes the viewpoint of the development direction of TES, especially the direction of optimizing TES for deep brain stimulation, aiming to provide new ideas for subsequent research and application.
Transcranial Direct Current Stimulation/methods*
;
Deep Brain Stimulation
;
Brain/physiology*
;
Head
;
Electric Stimulation/methods*
4.Research advances in neuromodulation techniques for blood glucose regulation and diabetes intervention.
Journal of Biomedical Engineering 2023;40(6):1227-1234
Diabetes and its complications that seriously threaten the health and life of human, has become a public health problem of global concern. Glycemic control remains a major focus in the treatment and management of patients with diabetes. The traditional lifestyle interventions, drug therapies, and surgeries have benefited many patients with diabetes. However, due to problems such as poor patient compliance, drug side effects, and limited surgical indications, there are still patients who fail to effectively control their blood glucose levels. With the development of bioelectronic medicine, neuromodulation techniques have shown great potential in the field of glycemic control and diabetes intervention with its unique advantages. This paper mainly reviewed the research advances and latest achievements of neuromodulation technologies such as peripheral nerve electrical stimulation, ultrasound neuromodulation, and optogenetics in blood glucose regulation and diabetes intervention, analyzed the existing problems and presented prospects for the future development trend to promote clinical research and application of neuromodulation technologies in the treatment of diabetes.
Humans
;
Blood Glucose
;
Transcranial Magnetic Stimulation/methods*
;
Transcranial Direct Current Stimulation/methods*
;
Transcutaneous Electric Nerve Stimulation
;
Diabetes Mellitus/therapy*
5.Status of Noninvasive Brain Stimulation in the Therapy of Alzheimer's Disease.
Chinese Medical Journal 2018;131(24):2899-2903
6.Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward.
Rui-Zhe ZHENG ; Zeng-Xin QI ; Zhe WANG ; Ze-Yu XU ; Xue-Hai WU ; Ying MAO
Neuroscience Bulletin 2023;39(1):138-162
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Humans
;
Transcranial Direct Current Stimulation/methods*
;
Consciousness Disorders/etiology*
;
Brain Injuries/complications*
;
Consciousness
;
Neuroimaging
7.Research on the effect of multi-modal transcranial direct current stimulation on stroke based on electroencephalogram.
Hongli YU ; Shaoqian ZHANG ; Chunfang WANG ; Lei GUO ; Guizhi XU
Journal of Biomedical Engineering 2022;39(5):966-973
As an emerging non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS) has received increasing attention in the field of stroke disease rehabilitation. However, its efficacy needs to be further studied. The tDCS has three stimulation modes: bipolar-stimulation mode, anode-stimulation mode and cathode-stimulation mode. Nineteen stroke patients were included in this research (10 with left-hemisphere lesion and 9 with right). Resting electroencephalogram (EEG) signals were collected from subjects before and after bipolar-stimulation, anodal-stimulation, cathodal-stimulation, and pseudo-stimulation, with pseudo-stimulation serving as the control group. The changes of multi-scale intrinsic fuzzy entropy (MIFE) of EEG signals before and after stimulation were compared. The results revealed that MIFE was significantly greater in the frontal and central regions after bipolar-stimulation ( P< 0.05), in the left central region after anodal-stimulation ( P< 0.05), and in the frontal and right central regions after cathodal-stimulation ( P< 0.05) in patients with left-hemisphere lesions. MIFE was significantly greater in the frontal, central and parieto-occipital joint regions after bipolar-stimulation ( P< 0.05), in the left frontal and right central regions after anodal- stimulation ( P< 0.05), and in the central and right occipital regions after cathodal-stimulation ( P< 0.05) in patients with right-hemisphere lesions. However, the difference before and after pseudo-stimulation was not statistically significant ( P> 0.05). The results of this paper showed that the bipolar stimulation pattern affected the largest range of brain areas, and it might provide a reference for the clinical study of rehabilitation after stroke.
Humans
;
Transcranial Direct Current Stimulation/methods*
;
Electroencephalography
;
Stroke Rehabilitation
;
Stroke/therapy*
;
Electrodes
8.Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques.
Nicole PETER ; Tobias KLEINJUNG
Journal of Zhejiang University. Science. B 2019;20(2):116-130
Tinnitus is defined as a perception of sound without any external sound source. Chronic tinnitus is a frequent condition that can affect the quality of life. So far, no causal cure for tinnitus has been documented, and most pharmacologic and psychosomatic treatment modalities aim to diminish tinnitus' impact on the quality of life. Neuromodulation, a novel therapeutic modality, which aims at alternating nerve activity through a targeted delivery of a stimulus, has emerged as a potential option in tinnitus treatment. This review provides a brief overview of the current neuromodulation techniques as tinnitus treatment options. The main intention is to provide updated knowledge especially for medical professionals counselling tinnitus patients in this emerging field of medicine. Non-invasive methods such as repetitive transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and transcutaneous vagus nerve stimulation were included, as well as invasive methods such as implanted vagus nerve stimulation and invasive brain stimulation. Some of these neuromodulation techniques revealed promising results; nevertheless, further research is needed, especially regarding the pathophysiological principle as to how these neuromodulation techniques work and what neuronal change they induce. Various studies suggest that individually different brain states and networks are involved in the generation and perception of tinnitus. Therefore, in the future, individually tailored neuromodulation strategies could be a promising approach in tinnitus treatment for achieving a more substantial and longer lasting improvement of complaints.
Deep Brain Stimulation/methods*
;
Humans
;
Neurofeedback/methods*
;
Tinnitus/therapy*
;
Transcranial Direct Current Stimulation/methods*
;
Transcranial Magnetic Stimulation/methods*
;
Vagus Nerve Stimulation/methods*
9.Research on electroencephalogram power spectral density of stroke patients under transcranial direct current stimulation.
Mengmeng LIU ; Guizhi XU ; Hongli YU ; Chunfang WANG ; Changcheng SUN ; Lei GUO
Journal of Biomedical Engineering 2022;39(3):498-506
Transcranial direct current stimulation (tDCS) has become a new method of post-stroke rehabilitation treatment and is gradually accepted by people. However, the neurophysiological mechanism of tDCS in the treatment of stroke still needs further study. In this study, we recruited 30 stroke patients with damage to the left side of the brain and randomly divided them into a real tDCS group (15 cases) and a sham tDCS group (15 cases). The resting EEG signals of the two groups of subjects before and after stimulation were collected, then the difference of power spectral density was analyzed and compared in the band of delta, theta, alpha and beta, and the delta/alpha power ratio (DAR) was calculated. The results showed that after real tDCS, delta band energy decreased significantly in the left temporal lobes, and the difference was statistically significant ( P < 0.05); alpha band energy enhanced significantly in the occipital lobes, and the difference was statistically significant ( P < 0.05); the difference of theta and beta band energy was not statistically significant in the whole brain region ( P > 0.05). Furthermore, the difference of delta, theta, alpha and beta band energy was not statistically significant after sham tDCS ( P > 0.05). On the other hand, the DAR value of stroke patients decreased significantly after real tDCS, and the difference was statistically significant ( P < 0.05), and there was no significant difference in sham tDCS ( P > 0.05). This study reveals to a certain extent the neurophysiological mechanism of tDCS in the treatment of stroke.
Brain/physiopathology*
;
Brain Waves/physiology*
;
Electroencephalography/methods*
;
Humans
;
Stroke/therapy*
;
Stroke Rehabilitation/methods*
;
Transcranial Direct Current Stimulation/methods*
10.The measurements of the similarity of dynamic brain functional network.
Yongquan HE ; Li ZHANG ; Shan FANG ; Yaqin ZENG ; Wei YANG ; Weidong CHEN ; Yuling SHAO ; Ruidong CHENG ; Xiangming YE ; Dongrong XU
Journal of Biomedical Engineering 2022;39(2):237-247
Brain functional network changes over time along with the process of brain development, disease, and aging. However, most of the available measurements for evaluation of the difference (or similarity) between the individual brain functional networks are for charactering static networks, which do not work with the dynamic characteristics of the brain networks that typically involve a long-span and large-scale evolution over the time. The current study proposes an index for measuring the similarity of dynamic brain networks, named as dynamic network similarity (DNS). It measures the similarity by combining the "evolutional" and "structural" properties of the dynamic network. Four sets of simulated dynamic networks with different evolutional and structural properties (varying amplitude of changes, trend of changes, distribution of connectivity strength, range of connectivity strength) were generated to validate the performance of DNS. In addition, real world imaging datasets, acquired from 13 stroke patients who were treated by transcranial direct current stimulation (tDCS), were used to further validate the proposed method and compared with the traditional similarity measurements that were developed for static network similarity. The results showed that DNS was significantly correlated with the varying amplitude of changes, trend of changes, distribution of connectivity strength and range of connectivity strength of the dynamic networks. DNS was able to appropriately measure the significant similarity of the dynamics of network changes over the time for the patients before and after the tDCS treatments. However, the traditional methods failed, which showed significantly differences between the data before and after the tDCS treatments. The experiment results demonstrate that DNS may robustly measure the similarity of evolutional and structural properties of dynamic networks. The new method appears to be superior to the traditional methods in that the new one is capable of assessing the temporal similarity of dynamic functional imaging data.
Aging/physiology*
;
Brain/physiology*
;
Brain Mapping
;
Humans
;
Magnetic Resonance Imaging/methods*
;
Nerve Net/physiology*
;
Transcranial Direct Current Stimulation/methods*