1.Resistance to Toxoplasma gondii Infection in Mice Treated with Silk Protein by Enhanced Immune Responses.
Joung Ho MOON ; Kyoung Ho PYO ; Bong Kwang JUNG ; Hyang Sook CHUN ; Jong Yil CHAI ; Eun Hee SHIN
The Korean Journal of Parasitology 2011;49(3):303-308
This study investigated whether elevated host immune capacity can inhibit T. gondii infection. For this purpose, we used silk protein extracted from Bombyx mori cocoons as a natural supplement to augment immune capacity. After silk protein administration to BALB/c mice for 6 weeks, ratios of T lymphocytes (CD4+ and CD8+ T-cells) and splenocyte proliferative capacities in response to Con A or T. gondii lysate antigen (TLA) were increased. Of various cytokines, which regulate immune systems, Th1 cytokines, such as IFN-gamma, IL-2, and IL-12, were obviously increased in splenocyte primary cell cultures. Furthermore, the survival of T. gondii (RH strain)-infected mice increased from 2 days to 5 or more days. In a state of immunosuppression induced by methylprednisolone acetate, silk protein-administered mice were resistant to reduction in T-lymphocyte (CD4+ and CD8+ T-cells) numbers and the splenocyte proliferative capacity induced by Con A or TLA with a statistical significance. Taken together, our results suggest that silk protein augments immune capacity in mice and the increased cellular immunity by silk protein administration increases host protection against acute T. gondii infection.
Animals
;
Bombyx/*chemistry
;
CD4-CD8 Ratio
;
Cell Proliferation
;
Cells, Cultured
;
Cytokines/secretion
;
Insect Proteins/*immunology
;
Leukocytes, Mononuclear/immunology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Silk/immunology
;
Spleen/immunology
;
Survival Analysis
;
Toxoplasma/*immunology/pathogenicity
;
Toxoplasmosis, Animal/immunology/*prevention & control
2.Protective effect of DNA-mediated immunization with a combination of SAG1 and IL-2 gene adjuvant against infection of Toxoplasma gondii in mice.
Guanjin CHEN ; Haifeng CHEN ; Hong GUO ; Huanqin ZHENG
Chinese Medical Journal 2002;115(10):1448-1452
OBJECTIVETo characterize the immune response induced by SAG1 encoding plasmid combined with IL-2 gene adjuvant in mice and to assess the protective effect of this vaccination against toxoplasmosis.
METHODSMice were co-injected intramuscularly with plasmid encoding Toxoplasma gondii SAG1 plus murine IL-2 expression vector at a dose of 100 microg. Booster immunizations were employed 2 more times at 3-week interval. As controls, mice were inoculated with PBS or empty plasmid pcDNA3. Humoral and cellular responses were assayed using ELISA for the determination of Ab, Ab isotype and IFN-gamma, as well as IL-4. To detect the integration and dissemination of DNA in the injected mice, PCR and in situ hybridization were performed. All mice were then infected with highly virulent RH tachyzoites of Toxoplasma gondii intraperitoneally.
RESULTSSignificant increases in specific IgG levels were observed in mice after immunization three times with SAG1 expression plasmid. With respect to the IgG isotype, co-inoculation of IL-2 expression plasmid enhanced the level of IgG2a and the production of IFN-gamma. Challenging mice by vaccinating with combined plasmids with RH tachyzoites resulted in prolonged survival.
CONCLUSIONHumoral and cytokine responses elicited by SAG1 DNA immunization can be modulated by co-inoculation with IL-2 expression plasmid. The use of DNA vaccine in combination with an appropriate cytokine gene to prevent T. gondii infection warrants further investigation.
Animals ; Antibodies, Protozoan ; blood ; Antigens, Protozoan ; Cytokines ; biosynthesis ; Female ; Immunization ; Immunoglobulin G ; blood ; classification ; Interleukin-2 ; genetics ; Mice ; Protozoan Proteins ; genetics ; Protozoan Vaccines ; immunology ; Toxoplasma ; immunology ; Toxoplasmosis, Animal ; prevention & control ; Vaccines, DNA ; immunology