1.A review of porcine torovirus research: etiology and epidemiology.
Lei CHEN ; Ling ZHU ; Yuan-Cheng ZHOU ; Wan-Zhu GUO
Chinese Journal of Virology 2013;29(6):667-672
Porcine Torovirus (PToV) is widely distributed in the world with high prevalence rate in swinery. Due to the high detection rate in diarrhea pigs, PToV is thought to be a potential pathogen of swine diarrhea. In recent years, epidemic outbreaks of diarrhea with high morbidity and mortality in China have caused great economic losses. Intertypic recombination events and antigenic cross-reactivity among toroviruses implies potential zoonotic transmission of PToV. The review represented the development history of PToV and made a brief summary of the features in genome and protein epidemiology and laboratory diagnosis of the PToV, and so on.
Animals
;
China
;
epidemiology
;
Swine
;
Swine Diseases
;
epidemiology
;
virology
;
Torovirus
;
genetics
;
physiology
;
Torovirus Infections
;
epidemiology
;
veterinary
;
virology
2.Prevalence and molecular characterization of novel recombinant enterovirus G isolates in Jeju Province of South Korea
Korean Journal of Veterinary Research 2019;59(2):89-96
Enterovirus species G (EV-G) is highly diverse, and is ubiquitous in pig populations, usually without diarrhea. The present study aimed to investigate the presence of novel EV-G recombinants with the torovirus papain-like cysteine protease (PLCP) in Jeju pig herds. EV-G1-PLCP mono-infections were most prevalent in diarrheic weaned piglets. The PLCP genes of the Jeju isolates varied in size and junction sequences, and were greatly heterogeneous, with 77.0–90.7% homology amongst all recombinants. Our results suggest that the exogenous PLCP gene has undergone continuous rapid mutation in the individual EV-G genomes following cross-order recombination, thereby causing clinical disease in swine.
Cysteine Proteases
;
Diarrhea
;
Enterovirus
;
Genome
;
Korea
;
Prevalence
;
Recombination, Genetic
;
Swine
;
Torovirus
3.Causative agents and epidemiology of diarrhea in Korean native calves
Sung Hwan LEE ; Ha Young KIM ; Eun Wha CHOI ; Doo KIM
Journal of Veterinary Science 2019;20(6):e64-
Calf diarrhea caused by infectious agents is associated with economic losses in the cattle industry. The purpose of this study was to identify the causative agents and epidemiological characteristics of diarrhea in Korean native calves (KNC). In total, 207 diarrheal KNC aged less than 7 months were investigated. Fecal samples collected from the rectum were examined for causative agents using polymerase chain reaction (PCR) or real-time PCR and the number of oocysts were counted. Fourteen causative agents were detected from 164 of the 207 diarrheal KNC. Rotavirus was the most common agent (34.8%), followed by Eimeria spp. (31.7%), Escherichia coli (22.0%), Giardia spp. (14.0%), Clostridium difficile (9.8%), bovine viral diarrhea virus (8.5%), coronavirus (7.9%), Cryptosporidium spp. (7.3%), torovirus (6.7%), parvovirus (5.5%), norovirus (4.9%), kobuvirus (1.8%), adenovirus (1.2%), and Salmonella spp. (0.6%). About 95 (57.9%) of 164 calves were infected with a single causative agent and 42.1% were infected by multiple agents. No significant difference was observed in mortality between calves infected with a single agent and multiple agents. The occurrence of diarrhea caused by rotavirus, Eimeria spp., kobuvirus, and Giardia spp. was significantly different based on onset age, and the prevalence of diarrhea caused by rotavirus or C. difficile was significantly different between seasons. This study help the understanding of KNC diarrhea for the development of an effective strategy for disease prevention and control, especially in Eastern provinces of South Korea.
Adenoviridae
;
Age of Onset
;
Animals
;
Cattle
;
Clostridium difficile
;
Coronavirus
;
Cryptosporidium
;
Diarrhea
;
Eimeria
;
Epidemiology
;
Escherichia coli
;
Giardia
;
Kobuvirus
;
Korea
;
Mortality
;
Norovirus
;
Oocysts
;
Parvovirus
;
Polymerase Chain Reaction
;
Prevalence
;
Real-Time Polymerase Chain Reaction
;
Rectum
;
Rotavirus
;
Salmonella
;
Seasons
;
Torovirus