1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.Evaluation of transdermal absorption of self-assembled nanoparticles of Huangqin decoction loaded with terbinafine
Chengying SHEN ; Yican HE ; Xiao CHENG ; Chaoying DU ; Hongyan MIN ; Baode SHEN ; Lingfei TONG
China Pharmacy 2026;37(2):180-185
OBJECTIVE To investigate the effect of Huangqin decoction (HQD)-based self-assembled nanoparticles (SAN) co-loaded with terbinafine (TBF) (TBF-HQD-SAN NPs) on the transdermal absorption of TBF. METHODS High-speed centrifugation combined with dialysis was used to separate HQD-SAN, and TBF-HQD-SAN NPs were obtained by loading TBF using the ultrasound magnetic stirring method; the particle size distribution, Zeta potential and polydispersity index (PDI) of the nanoparticle were characterized, and the encapsulation efficiency (EE) and drug loading (DL) of TBF were determined; using in vitro and in vivo transdermal experiments, the differences in transdermal performance between TBF-HQD-SAN NPs and TBF raw materials, as well as TBF and HQD-SAN physical mixture (TBF-HQD-SAN PM), were compared and analyzed. RESULTS TBF- HQD-SAN NPs were spherical with a particle size of (177.60±2.57) nm, a PDI of 0.197 4±0.007 9, and a Zeta potential of (-14.63±0.85) mV. The EE and DL of TBF were (99.49±0.71)% and (3.22±0.10)% , respectively. In vitro transdermal experiments, compared with TBF raw materials, the steady-state permeation rate (Jss) and skin retention of TBF-HQD-SAN NPs increased by 3.34 times and 27.56 times, respectively (P<0.05); compared with TBF-HQD-SAN PM, its Jss and skinretention were increased by 2.04 times and 7.44 times, respectively (P<0.05). In vivo transdermal experiments 69号) showed that, the area under the drug-time curve and the maximum concentration of TBF-HQD-SAN NPs increased by 2.13 times and 2.06 times respectively compared to TBF raw materials, and increased by 1.59 times and 1.65 times respectively compared to TBF-HQD-SAN PM (P<0.05). CONCLUSIONS TBF-HQD-SAN NPs can significantly enhance the in vitro and in vivo transdermal absorption efficiency and skin retention of TBF.
4.Health literacy prediction models based on machine learning methods: a scoping review
PAN Xiang ; TONG Yingge ; LI Yixuan ; NI Ke ; CHENG Wenqian ; XIN Mengyu ; HU Yuying
Journal of Preventive Medicine 2025;37(2):148-153
Objective:
To conduct a scoping review on the types, construction methods and predictive performance of health literacy prediction models based on machine learning methods, so as to provide the reference for the improvement and application of such models.
Methods:
Publications on health literacy prediction models conducted using machine learning methods were retrieved from CNKI, Wanfang Data, VIP, PubMed and Web of Science from inception to May 1, 2024. The quality of literature was assessed using the Prediction Model Risk of Bias ASsessment Tool. Basic characteristics, modeling methods, data sources, missing value handling, predictors and predictive performance were reviewed.
Results:
A total of 524 publications were retrieved, and 22 publications between 2007 and 2024 were finally enrolled. Totally 48 health literacy prediction models were involved, and 25 had a high risk of bias (52.08%), with major issues focusing on missing value handling, predictor selection and model evaluation methods. Modeling methods included regression models, tree-based machine learning methods, support vector machines and neural network models. Predictors primarily encompassed factors at four aspects: individual, interpersonal, organizational and society/policy aspects, with age, educational level, economic status, health status and internet use appearing frequently. Internal validation was conducted in 14 publications, and external validation was conducted in 4 publications. Forty-two models reported the areas under the receiver operating characteristic curve, which ranged from 0.52 to 0.983, indicating good discrimination.
Conclusion
Health literacy prediction models based on machine learning methods perform well, but have deficiencies in risk of bias, data processing and validation.
5.Anticoagulation therapy analysis and pharmaceutical care for a breast cancer patient with pulmonary thromboem-bolism accompanied by multiple comorbidities
Meng HUO ; Qijian CHENG ; Jiayuan LIN
China Pharmacy 2025;36(2):219-224
OBJECTIVE To provide a reference for anticoagulant therapy and pharmaceutical care of the breast cancer patient with pulmonary thromboembolism (PTE) accompanied by multiple comorbidities. METHODS Clinical pharmacists participated in the diagnosis and treatment of a breast cancer patient with PTE accompanied by severe thrombocytopenia and suspected antiphospholipid syndrome secondary to systemic lupus erythematosus, and provided personalized pharmaceutical care as developing individualized anticoagulation plans and monitoring patient bleeding. For the occurrence of PTE, the clinical pharmacist recommended stopping all breast cancer drugs. The clinical pharmacists also cleared that severe thrombocytopenia was not the absolute contraindication for anticoagulant treatment and suggested fondaparinux sodium as the initial anticoagulation regimen. Further, warfarin was recommended as the long-term anticoagulation regimen with a recommended treatment course of at least 3-6 months by the clinical pharmacists. Whether to continue indefinite anticoagulation therapy was based on the results of the antiphospholipid antibodies after 12 weeks combined with the tumor treatment regimen. RESULTS The physicians adopted the advice of the clinical pharmacists. After treatment, the patient’s blood phlegm and anhelation disappeared and the platelets returned to normal. The patient was allowed to be discharged with medication. CONCLUSIONS Taking the “anticoagulation-bleeding” as the starting point, the clinical pharmacists develop individualized medication plans for patients so as to ensure the safety and effectiveness of medication in the patient by providing pharmaceutical care, such as analyzing the causal relationship between breast cancer treatment-related drugs and PTE, assessing the risk of bleeding and thrombus recurrence, and monitoring patients’ bleeding symptoms and signs and coagulation indicators.
6.Anticoagulation therapy analysis and pharmaceutical care for a breast cancer patient with pulmonary thromboem-bolism accompanied by multiple comorbidities
Meng HUO ; Qijian CHENG ; Jiayuan LIN
China Pharmacy 2025;36(2):219-224
OBJECTIVE To provide a reference for anticoagulant therapy and pharmaceutical care of the breast cancer patient with pulmonary thromboembolism (PTE) accompanied by multiple comorbidities. METHODS Clinical pharmacists participated in the diagnosis and treatment of a breast cancer patient with PTE accompanied by severe thrombocytopenia and suspected antiphospholipid syndrome secondary to systemic lupus erythematosus, and provided personalized pharmaceutical care as developing individualized anticoagulation plans and monitoring patient bleeding. For the occurrence of PTE, the clinical pharmacist recommended stopping all breast cancer drugs. The clinical pharmacists also cleared that severe thrombocytopenia was not the absolute contraindication for anticoagulant treatment and suggested fondaparinux sodium as the initial anticoagulation regimen. Further, warfarin was recommended as the long-term anticoagulation regimen with a recommended treatment course of at least 3-6 months by the clinical pharmacists. Whether to continue indefinite anticoagulation therapy was based on the results of the antiphospholipid antibodies after 12 weeks combined with the tumor treatment regimen. RESULTS The physicians adopted the advice of the clinical pharmacists. After treatment, the patient’s blood phlegm and anhelation disappeared and the platelets returned to normal. The patient was allowed to be discharged with medication. CONCLUSIONS Taking the “anticoagulation-bleeding” as the starting point, the clinical pharmacists develop individualized medication plans for patients so as to ensure the safety and effectiveness of medication in the patient by providing pharmaceutical care, such as analyzing the causal relationship between breast cancer treatment-related drugs and PTE, assessing the risk of bleeding and thrombus recurrence, and monitoring patients’ bleeding symptoms and signs and coagulation indicators.
7.Characterization of non-alcoholic fatty liver disease–related hepatocellular carcinoma on contrast-enhanced ultrasound with Sonazoid
Yi DONG ; Juan CHENG ; Yun-Lin HUANG ; Yi-Jie QIU ; Jia-Ying CAO ; Xiu-Yun LU ; Wen-Ping WANG ; Kathleen MÖLLER ; Christoph F. DIETRICH
Ultrasonography 2025;44(3):232-242
Purpose:
This study aimed to evaluate the contrast-enhanced ultrasound with Sonazoid (Sonazoid-CEUS) features of hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).
Methods:
In this retrospective study, patients who underwent surgical resection and were histopathologically diagnosed with NAFLD or cirrhosis-related HCC were included. All patients received Sonazoid-CEUS examinations within 1 week prior to hepatic surgery. The enhancement patterns of HCC lesions were evaluated and compared between the two groups according to the current World Federation for Ultrasound in Medicine and Biology guidelines. Multivariate logistic regression analysis was used to assess the correlations between Sonazoid-CEUS enhancement patterns and clinicopathologic characteristics.
Results:
From March 2022 to April 2023, a total of 151 patients with HCC were included, comprising 72 with NAFLD-related HCC and 79 with hepatitis B virus (HBV) cirrhosis–related HCC. On Sonazoid-CEUS, more than half of the NAFLD-related HCCs exhibited relatively early and mild washout within 60 seconds (54.2%, 39/72), whereas most HBV cirrhosis–related HCCs displayed washout between 60 and 120 seconds (46.8%, 37/79) or after 120 seconds (39.2%, 31/79) (P<0.001). In the patients with NAFLD-related HCC, multivariate analysis revealed that international normalized ratio (odds ratio [OR], 0.002; 95% confidence interval [CI], 0.000 to 0.899; P=0.046) and poor tumor differentiation (OR, 21.930; 95% CI, 1.960 to 245.319; P=0.012) were significantly associated with washout occurring within 60 seconds.
Conclusion
Characteristic Sonazoid-CEUS features are useful for diagnosing HCC in patients with NAFLD.
9.Promotion of Angiogenesis by Colorectal Cancer Cell LoVo Derived-exosomes Through Transferring pEGFR
Ya-Jie CHENG ; Xue-Tong ZHOU ; Rui WANG ; Jin FANG
Progress in Biochemistry and Biophysics 2025;52(5):1229-1240
ObjectiveThis study sought to investigate the impact of exosomes derived from LoVo cells (LoVo-Exos) in colorectal cancer (CRC) on tumor angiogenesis, as well as to elucidate the potential molecular mechanisms underlying their pro-angiogenic effects. MethodsLoVo-Exos were isolated via ultracentrifugation, and their internalization into recipient human umbilical vein endothelial cells (HUVECs) was visualized using confocal microscopy. The influence of LoVo-Exos on angiogenesis was assessed through an in vitro tube formation assay. Additionally, the pro-angiogenic effects of LoVo-Exos were evaluated in vivo using a matrix gluing assay in mice. To investigate the molecular mechanisms through which LoVo-Exos facilitate angiogenesis, Western blot analysis was employed to examine the transfer of pEGFR by LoVo-Exos into recipient cells. Both Western blot and ELISA were utilized to assess the expression levels of key signaling proteins within the EGFR-ERK pathway, as well as the expression of downstream angiogenic core molecules. Furthermore, the impact of EGFR knockdown and ERK inhibitor treatment on angiogenesis was evaluated, with subsequent analysis of the expression of downstream angiogenic core molecules following these interventions. ResultsConfocal microscopy demonstrated the internalization of LoVo-Exos into HUVECs. In vitro angiogenesis assays further indicated that LoVo-Exos significantly enhanced the formation of tubular structures in HUVECs. Additionally, macroscopic examination of subcutaneous matrix plug formation in mice revealed a substantial increase in vascular-like structures within the matrix plugs following the administration of LoVo-Exos, compared to the PBS control group. Hematoxylin and eosin (HE) staining revealed the presence of erythrocyte-filled microvessels within the matrix plugs combined with LoVo-Exos. Furthermore, immunohistochemical analysis demonstrated the expression of the endothelial cell marker CD31 in these matrix plugs. The presence of CD31-positive cells in the LoVo-Exos-treated matrix plugs was associated with a significant enhancement in the formation of luminal structures. These findings suggest that LoVo-Exos facilitate the in vivo development of vascular-like structures. Subsequent investigations demonstrated that LoVo-Exos facilitated the delivery of pEGFR to HUVEC, thereby enhancing angiogenesis. Conversely, LoVo-Exos with EGFR knockdown exhibited a diminished capacity to promote angiogenesis, an effect that was further attenuated by the ERK phosphorylation inhibitor U0126. Western blot analysis assessing the activation of the EGFR-ERK signaling pathway in HUVEC indicated that LoVo-Exos augmented angiogenesis through the activation of this pathway. Furthermore, analysis of the impact of LoVo-Exos on the expression of downstream angiogenic core molecules revealed an increase in interleukin-8 (IL-8) secretion in HUVEC. The enhancement observed was diminished in LoVo-Exos following EGFR knockdown, and this reduction was counteracted by the ERK phosphorylation inhibitor U0126. ConclusionThe underlying mechanism may involve the delivery of pEGFR in LoVo-Exos to HUVECs, leading to increased IL-8 secretion via the EGFR-ERK signaling pathway, thereby enhancing the angiogenic potential of HUVECs. This finding may offer new insights into the mechanisms underlying cancer metastasis.
10.Comprehensive Application of AHP-CRITIC Hybrid Weighting Method, Grey Correlation Analysis and BP-ANN in Optimization of Extraction Process of Qizhi Prescription
Qun LAN ; Yi CHENG ; Zian LI ; Bingyu WU ; Jinyu WANG ; Dewen LIU ; Yan TONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):176-186
ObjectiveBased on analytic hierarchy process(AHP)-criteria importance through intercriteria correlation(CRITIC) hybrid weighting method, grey relational analysis and backpropagation artificial neural network(BP-ANN), to optimize the water extraction process of Qizhi prescription, so as to provide an experimental basis for optimization of the preparation process of this prescription and the establishment of quality standards. MethodsL9(34) orthogonal test was employed, and the AHP-CRITIC hybrid weighting method was utilized to determine the weight coefficients of the quality fractions of various components, including astragaloside Ⅳ, polygalaxanthone Ⅲ, calycosin-7-O-β-D-glucoside, tenuifolin, and 3,6′-disinapoylsucrose, as well as the dry extract yield. The comprehensive score of each factor level combination in the orthogonal test were calculated as evaluation indicator to select the optimal extraction process parameters. The effects of extraction times, extraction time, and solvent dosage on the aqueous extraction process of the formula were investigated through intuitive analysis, variance analysis, and grey relational analysis. Meanwhile, a BP-ANN model was established to reverse-predict the optimal extraction process parameters of Qizhi prescription, and the optimized process parameters were validated. ResultsThe weight coefficients of the five index components(astragaloside Ⅳ, tenuifolin, calycosin-7-O-β-D-glucoside, polygalaxanthone Ⅲ, and 3,6′-disinapoylsucrose) and dry extract yield were 25.7%, 20.82%, 16.41%, 12.45%, 15.96% and 8.67%, respectively. The optimized extraction process parameters were extracted 3 times with 8, 6, 6 times the amount of water, each time for 1 h. The network prediction results of BP-ANN test samples were consistent with the orthogonal test results, and the mean square error(MSE) of the predicted and measured values of the network was <1%. The water extraction process of Qizhi prescription analyzed and predicted by relevant mathematical models was stable and feasible, which could effectively improve the extraction efficiency of the active ingredients of Astragali Radix and Polygalae Radix, and the average comprehensive score of the validation test was 90.85 with the relative standard deviation(RSD) of 1.55%. ConclusionThis study establishes a water extraction process for compound Qizhi granules, and the optimized extraction process can effectively improve the extraction efficiency of active ingredients, which provides useful references for the optimization of preparation process and the establishment of quality standards for other clinical experience formulas.


Result Analysis
Print
Save
E-mail