1.Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy.
Safak KULUNK ; Tolga KULUNK ; Duygu SARAC ; Seda CENGIZ ; Seniha BABA
The Journal of Advanced Prosthodontics 2014;6(4):272-277
PURPOSE: The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS: Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with Al2O3; Co: airborne particle abrasion with silica-coated Al2O3; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (alpha=0.05). RESULTS: Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION: Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling.
Alloys*
;
Aluminum Oxide
;
Water
2.The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core.
Tolga KULUNK ; Safak KULUNK ; Seniha BABA ; Ozgur OZTURK ; Sengul DANISMAN ; Soner SAVAS
The Journal of Advanced Prosthodontics 2013;5(4):382-387
PURPOSE: Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS: Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 microm aluminum oxide particles (Al2O3), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 microm Al2O3 + Al coating and air particle abrasion with 50 microm Al2O3 + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (alpha=.05). RESULTS: The highest bond strengths were obtained by air abrasion with 50 microm Al2O3, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION: Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.
Adhesives
;
Aluminum Oxide*
;
Collodion
;
Resin Cements
;
Zirconium