2.Research advance in surface modification of titanium alloys with chitosan.
Jia-Xin LIU ; Li-Ping AN ; Yao-Fei JIA ; Guang-Rui ZHANG ; Jian-Ping ZHOU ; Ding WU ; Ming-Tao ZHANG ; Xiang-Dong YUN
China Journal of Orthopaedics and Traumatology 2020;33(12):1175-1178
Titanium alloy has good biological properties and is commonly used in orthopedics, but its bone integrity and antibacterial properties are poor, so surface modification is needed to make up for its shortcomings. Chitosan has good biocompatibility and film forming ability, and can be used as a carrier to introduce the target drug to the surface of titanium alloy, which can effectively improve the biological properties of titanium alloy materials and increase its application range. In this paper, the related research of chitosan surface modified titanium alloy materials in recent years is summarized. The modification methods of chitosan coating, the improvement of osteogenesisand antibacterial properties of titanium alloy materials are discussed in order to provide guidance for the clinical application of coating modification of titanium alloy materials.
Alloys
;
Anti-Bacterial Agents/pharmacology*
;
Chitosan
;
Orthopedics
;
Surface Properties
;
Titanium
3.Near-infrared excited graphene oxide/silver nitrate/chitosan coating for improving antibacterial properties of titanium implants.
Yifan WANG ; Yingde XU ; Xuefeng ZHANG ; Jingyu LIU ; Jintong HAN ; Shengli ZHU ; Yanqin LIANG ; Shuilin WU ; Zhenduo CUI ; Weijia LÜ ; Zhaoyang LI
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):937-944
OBJECTIVE:
To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery.
METHODS:
GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized.
RESULTS:
The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect.
CONCLUSION
GO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.
Chitosan
;
Silver Nitrate
;
Titanium
;
Anti-Bacterial Agents/pharmacology*
;
Coloring Agents
4.Effect of Candida albicans growth on silicone elastomer containing nano-TiO2.
Bei LI ; Yi-Min ZHAO ; Ju-Cai YANG ; Ying HAN ; Zhi-Wei DONG
Chinese Journal of Stomatology 2008;43(6):367-369
OBJECTIVETo study the antibacterial effect against Candida albicans of the A-2186 silicone elastomer containing nano-TiO2 in vitro.
METHODSAntibacterial agent of nano-TiO2 was added into A-2186 silicone elastomer with incorporating percentages of 0.5%, 1.0%, 1.5%, and 2.0% (W/W). There was no nano-TiO2 in the control group. The antibacterial effect of the A-2186 silicone elastomer was determined using the film contact method with lighting and without lighting.
RESULTSEither with lighting or without lighting, there were significances between the experiment groups and the control group (P < 0.05). When the incorporating percent was 2.0%, the inhibitory effect was the best among the experiment groups. Without lighting, the inhibitory rate was 53.7% and with lighting, the inhibitory rate was 85.9%.
CONCLUSIONSThe A-2186 silicone elastomer containing nano-TiO2 has antibacterial properties against Candida albicans, which enhances with increases of nano-TiO2 percent in the material. With the same incorporating percentage, the antibacterial effect with lighting is better than that without lighting.
Antifungal Agents ; pharmacology ; Candida albicans ; drug effects ; Nanostructures ; Silicone Elastomers ; chemistry ; pharmacology ; Titanium ; pharmacology
5.Effect of graphene-oxide-modified osteon-like concentric microgrooved surface on the osteoclastic differentiation of macrophages.
Hong WANG ; Qinglin WU ; Yingzhen LAI ; Yihuang CAI
West China Journal of Stomatology 2023;41(2):165-174
OBJECTIVES:
This study aimed to investigate the effect of new biomimetic micro/nano surfaces on the osteoclastic differentiation of RAW264.7 macrophages by simulating natural osteons for the design of concentric circular structures and modifying graphene oxide (GO).
METHODS:
The groups were divided into smooth titanium surface group (SS), concentric microgrooved titanium surface group (CMS), and microgroove modified with GO group (GO-CMS). The physicochemical properties of the material surfaces were studied using scanning electron microscopy (SEM), contact-angle measurement, atomic force microscopy, X-ray photoelectron spectroscopy analysis, and Raman spectroscopy. The effect of the modified material surface on the cell biological behavior of RAW264.7 was investigated by cell-activity assay, SEM, and laser confocal microscopy. The effect on the osteoclastic differentiation of macrophages was investiga-ted by tartrate-resistant acid phosphatase (TRAP) immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR) experiments.
RESULTS:
Macrophages were arranged in concentric circles along the microgrooves, and after modification with GO, the oxygen-containing groups on the surface of the material increased and hydrophilicity increased. Osteoclasts in the GO-CMS group were small in size and number and had the lowest TRAP expression. Although it promoted the proliferation of macrophages in the GO-CMS group, the expression of osteoclastic differentiation-related genes was lower than that in the SS group, and the difference was statistically significant (P<0.05).
CONCLUSIONS
Concentric circular microgrooves restricted the fusion of osteoclasts and the formation of sealing zones. Osteomimetic concentric microgrooves modified with GO inhibited the osteoclastic differentiation of RAW 264.7 macrophages.
Graphite/pharmacology*
;
Titanium/pharmacology*
;
Haversian System
;
Macrophages
;
Cell Differentiation
;
Oxides/pharmacology*
;
Surface Properties
6.Mechanical and light-activated antibacterial properties of resin filled with Ag-TiO2 nanoparticles.
Shiqi PAN ; Shuxin LU ; Ruoyu LI ; Xiangyu ZHANG ; Weiyi CHEN
Journal of Biomedical Engineering 2022;39(4):749-758
The poor mechanical property and vulnerability to bacterial infections are the main problems in clinic for dental restoration resins. Based on this problem, the purpose of this study is to synthesize silver-titanium dioxide (Ag-TiO2) nanoparticles with good photocatalytic properties, and add them to the composite resin to improve the mechanical properties and photocatalytic antibacterial capability of the resin. The microstructure and chemical composition of Ag-TiO2 nanoparticles and composite resins were characterized. The results indicated that Ag existed in both metallic and silver oxide state in the Ag-TiO2, and Ag-TiO2 nanoparticles were uniformly dispersed in the resins. The results of mechanical experiments suggested that the mechanical properties of the composite resin were significantly improved due to the incorporation of Ag-TiO2 nanoparticles. The antibacterial results indicated that the Ag-TiO2 nanoparticle-filled composite resins exhibited excellent antibacterial activities under 660 nm light irradiation for 10 min due to the photocatalysis, and the Ag-TiO2 nanoparticle-filled composite resins could also exhibit excellent antibacterial activities after contact with bacteria for 24 h without light irradiation because of the release of Ag ions. In summary, this study provides a new antibacterial idea for the field of dental composite resins.
Anti-Bacterial Agents/pharmacology*
;
Composite Resins
;
Metal Nanoparticles/chemistry*
;
Nanoparticles
;
Titanium/pharmacology*
7.Effects of nano titanium dioxide on gut microbiota based on human digestive tract microecology simulation system in vitro.
Jia He ZHANG ; Jia Qi SHI ; Zhang Jian CHEN ; Guang JIA
Journal of Peking University(Health Sciences) 2022;54(3):468-476
OBJECTIVE:
To explore the effects of oral exposure to titanium dioxide nanoparticles (TiO2 NPs) on the composition and structure of human gut microbiota.
METHODS:
The particle size, shape, crystal shape and degree of agglomeration in ultrapure water of TiO2 NPs were characterized. The in vitro human digestive tract microecological simulation system was established by simulating the fluid environment and physical conditions of stomach, small intestine and colon, and the stability of the simulation system was evaluated. The bacterial communities were extracted from human feces and cultured stably in the simulated system. They were exposed to 0, 20, 100 and 500 mg/L TiO2 NPs, respectively, and the bacterial fluids were collected after 24 h of exposure. The effect of TiO2 NPs on the composition and structure of human gut microbiota was analyzed by 16S rRNA sequencing technology. Linear discriminant analysis effect size (LEfSe) was used to screen differential bacteria, and the Kyoto encyclopedia of genes and genomes (KEGG) database for functional prediction.
RESULTS:
The spherical and anatase TiO2 NPs were (25.12±5.64) nm in particle size, while in ultra-pure water hydrated particle size was (609.43±60.35) nm and Zeta potential was (-8.33±0.22) mV. The in vitro digestive tract microecology simulation system reached a relatively stable state after 24 hours, and the counts of Enterococci, Enterobacte-rium, and Lactobacillus reached (1.6±0.85)×107, (5.6±0.82)×107 and (2.7±1.32)×107, respectively. 16S rRNA sequencing results showed that compared with the control group, the number and evenness of gut microbiota were not significantly affected at phylum, class, order, family and genus levels in TiO2 NPs groups (20, 100 and 500 mg/L). The relative abundance of some species was significantly changed, and a total of 42 different bacteria were screened between the TiO2 NPs groups (20, 100 and 500 mg/L) and the control group [linear discriminant analysis(LDA) score>3], represented by Enterobacter, Bacteroidaceae, Lactobacillaceae, Bifidobacteriaceae and Clostridium. Further predictive analysis of gut microbiota function showed that TiO2 NPs might affect oxidative phosphorylation, energy meta-bolism, phosphonate and phosphonate metabolism, and methane metabolism (P < 0.05).
CONCLUSION
In human digestive tract microecological simulation system, TiO2 NPs could significantly change the composition and structure of human gut microbiota, represented by Enterobacter and probiotics, and may further affect a variety of metabolism and function of the body.
Bacteria/genetics*
;
Gastrointestinal Microbiome
;
Gastrointestinal Tract
;
Humans
;
Nanoparticles
;
Organophosphonates/pharmacology*
;
RNA, Ribosomal, 16S
;
Titanium/pharmacology*
;
Water/pharmacology*
8.Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants.
Peng LIU ; Bo FAN ; Lei ZOU ; Lijun LÜ ; Qiuming GAO
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1300-1313
OBJECTIVE:
To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research.
METHODS:
The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances.
RESULTS:
At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity.
CONCLUSION
The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.
Anti-Bacterial Agents/pharmacology*
;
Coated Materials, Biocompatible/chemistry*
;
Metal-Organic Frameworks/pharmacology*
;
Osteogenesis
;
Surface Properties
;
Titanium/pharmacology*
;
Prostheses and Implants
9.Adsorption of chondroitin sulfate-A to the surface of titanium.
Hong FAN ; Zhiqing CHEN ; Ping ZHANG ; Jing QIU
Journal of Biomedical Engineering 2003;20(4):650-667
To elucidate the adsorption mechanism of CS-A to the surface of titanium, 5 ml solutions of the CS-A were reacted with 2 g of native and 2 g of calcium-treated titanium powder for 48 h at 37 degrees C. Residual CS-A was detected by the carbazole elaborate method. The results showed that no CS-A attached to native titanium. Comparatively, titanium treated with calcium produced a significant adsorption of CS-A. At concentration of 60 micrograms/ml, the adsorption of CA-A to calcium-treated titanium powder attained the maximum, 83 micrograms/g. Only EDTA can liberate the bound CS-A from titanium surface. These findings suggest that calcium ion is necessary for the adsorption of CS-A to titanium.
Adsorption
;
Calcium
;
Chondroitin Sulfates
;
pharmacology
;
Static Electricity
;
Surface Properties
;
Titanium
;
chemistry
10.Osteoblastic early attachment onto the surface of bioadhesive peptide modified pure titanium.
Yi-fan CHEN ; Yuan-jin HUANG ; Guang-bao SONG ; Qian-bing WAN ; Jian WANG ; Yong-lie CHAO
Chinese Journal of Stomatology 2010;45(8):462-465
OBJECTIVETo investigate the long-term integrity and the biological function of interface between the bioadhesive peptide modified implant surface and peri-implant tissue.
METHODSA short bioadhesive peptide containing Glycine-Tyrosine-Arginine-Glycine-Asparticacid-Serine (GYRGDS) sequence was immobilized onto the titanium implant surface by means of sol-gel coating technique and self-assembled monolayers (SAM). The chemical composition and organic functional groups on the titanium surfaces were characterized using XPS (X-ray photoelectron spectroscopy) and FTIR (Fourier transform infrared spectrometer). The adhesive strength and stability of osteoblasts on various implant surfaces were compared under flow condition.
RESULTSThe results showed that alkali/hot water aging treatment could apparently improve the content of -OH functional groups of titanium surface. The chemical reactive Ti-O-Ti bonding at the surface of titanium played a vital role in inducing the formation of organosilane SAM. GYRGDS peptide can be covalently grafted onto the surface of titanium by SAM technique. The resistance of freshly adherent osteoblasts to detachment by flow was shear time dependent. When the four groups were compared under the same flow stress condition (2.05 Pa) at three specific time spans (30 min, 1 h, 2 h), the cells retention rates in GYRGDS-grafted groups were 93.0%, 54.4%, 34.4% respectively and were much higher than those in non-coated groups.
CONCLUSIONSIt was suggested that GYRGDS might have positive effects on maintaining stability and adherence of cells onto the substrates under flow condition.
Dental Cements ; Osteoblasts ; physiology ; Peptides ; pharmacology ; Prostheses and Implants ; Surface Properties ; Titanium