1.Insight into Microenvironment Remodeling in Pancreatic Endocrine Tissue Engineering: Biological and Biomaterial Approaches.
Maryam KAVIANI ; Negar AZARPIRA
Tissue Engineering and Regenerative Medicine 2016;13(5):475-484
The treatment of diabetes mellitus, as a chronic and complicated disease, is a valuable purpose. Islet transplantation can provide metabolic stability and insulin independence in type 1 diabetes patients. Diet and insulin therapy are only diabetes controllers and cannot remove all of the diabetes complications. Moreover, islet transplantation is more promising treatment than whole pancreas transplantation because of lesser invasive surgical procedure and morbidity and mortality. According to the importance of extracellular matrix for islet viability and function, microenvironment remodeling of pancreatic endocrine tissue can lead to more success in diabetes treatment by pancreatic islets. Production of bioengineered pancreas and remodeling of pancreas extracellular matrix provide essential microenvironment for re-vascularization, re-innervation and signaling cascades triggering. Therefore, islets show better viability and function in these conditions. Researchers conduct various scaffolds with different biomaterials for the improvement of islet viability, function and transplantation outcome. The attention to normal pancreas anatomy, embryology and histology is critical to understand the pancreatic Langerhans islets niche and finally to achieve efficient engineered structure. Therefore, in the present study, the status and components of the islets niche is mentioned and fundamental issues related to the tissue engineering of this structure is considered. The purpose of this review article is summarization of recent progress in the endocrine pancreas tissue engineering and biomaterials and biological aspects of it.
Biocompatible Materials
;
Diabetes Complications
;
Diabetes Mellitus
;
Diet
;
Embryology
;
Extracellular Matrix
;
Humans
;
Insulin
;
Islets of Langerhans
;
Islets of Langerhans Transplantation
;
Mortality
;
Pancreas
;
Pancreas Transplantation
;
Tissue Engineering*
2.The Therapeutic Potential of Stem Cells and Progenitor Cells for the Treatment of Parkinson's Disease.
Mooi Tiong LIAU ; Farahnaz AMINI ; Thamil Selvee RAMASAMY
Tissue Engineering and Regenerative Medicine 2016;13(5):455-464
Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is usually seen in those above 50 years old. Current medical treatments only provide symptomatic relief but cannot cure the disease. There are claims that PD can be cured by stem cell transplant. The present study is aimed to assess the clinical potency and safety of stem cell in treating PD. A total of eleven articles were included for analysis, with four randomised control trials (RCTs), five non-RCTs and 2 follow up studies. All the four non-RCTs showed improvement of Unified Parkinson's Disease Rating Scale with no adverse events. However, results from RCTs showed no significant differences in the rating score among the transplant group and the Sham surgery group. The secondary analysis of one study showed a significant improvement of the rating score in those patients aged 60 and younger. Transplant group also associated with an overall higher incidence of adverse events. In conclusion, the RCTs and non-RCTs produced opposite results. When the studies were performed as non-RCTs in small number of patients, they showed promising result in the patients. It could say that currently the use of stem cell/progenitor cells in treating PD need much research despite having the implanted stem cell to be able to survive and integrated. The survival of implanted dopamine neurons in the striatum, however, does not indicate a success in correcting PD symptoms. Further investigations will shed light on the application and mechanism of action of stem cells in treating PD.
Cell- and Tissue-Based Therapy
;
Dopaminergic Neurons
;
Follow-Up Studies
;
Humans
;
Incidence
;
Neurodegenerative Diseases
;
Parkinson Disease*
;
Stem Cell Transplantation
;
Stem Cells*
3.Microengineered Platforms for Co-Cultured Mesenchymal Stem Cells towards Vascularized Bone Tissue Engineering.
Hyeryeon PARK ; Dong Jin LIM ; Minhee SUNG ; Soo Hong LEE ; Dokyun NA ; Hansoo PARK
Tissue Engineering and Regenerative Medicine 2016;13(5):465-474
Bone defects are common disease requiring thorough treatments since the bone is a complex vascularized tissue that is composed of multiple cell types embedded within an intricate extracellular matrix (ECM). For past decades, tissue engineering using cells, proteins, and scaffolds has been suggested as one of the promising approaches for effective bone regeneration. Recently, many researchers have been interested in designing effective platform for tissue regeneration by orchestrating factors involved in microenvironment around tissues. Among factors affecting bone formation, vascularization during bone development and after minor insults via endochondral and intramembranous ossification is especially critical for the long-term support for functional bone. In order to create vascularized bone constructs, the interactions between human mesenchymal stem cells (MSCs) and endothelial cells (ECs) have been investigated using both direct and indirect co-culture studies. Recently, various culture methods including micropatterning techniques, three dimensional scaffolds, and microfluidics have been developed to create micro-engineered platforms that mimic the nature of vascularized bone formation, leading to the creation of functional bone structures. This review focuses on MSCs co-cultured with endothelial cells and micro-engineered platforms to determine the underlying interplay between co-cultured MSCs and vascularized bone constructs, which is ultimately necessary for adequate regeneration of bone defects.
Bone and Bones*
;
Bone Development
;
Bone Regeneration
;
Coculture Techniques
;
Endothelial Cells
;
Extracellular Matrix
;
Humans
;
Mesenchymal Stromal Cells*
;
Microfluidics
;
Osteogenesis
;
Regeneration
;
Stem Cells
;
Tissue Engineering
4.Efficient Biomaterials for Tissue Engineering of Female Reproductive Organs.
Amin TAMADON ; Kyu Hyung PARK ; Yoon Young KIM ; Byeong Cheol KANG ; Seung Yup KU
Tissue Engineering and Regenerative Medicine 2016;13(5):447-454
Current investigations on the bioengineering of female reproductive tissues have created new hopes for the women suffering from reproductive organ failure including congenital anomaly of the female reproductive tract or serious injuries. There are many surgically restore forms that constitute congenital anomaly, however, to date, there is no treatment except surgical treatment of transplantation for patients who are suffering from anomaly or dysfunction organs like vagina and uterus. Restoring and maintaining the normal function of ovary and uterus require the establishment of biological substitutes that can cover the roles of structural support for cells and passage of secreting molecules. As in the case of constructing other functional organs, reproductive organ manufacturing also needs biological matrices which can provide an appropriate condition for attachment, growth, proliferation and signaling of various kinds of grafted cells. Among the organs, uterus needs special features such as plasticity due to their amazing changes in volume when they are in the state of pregnancy. Although numerous natural and synthetic biomaterials are still at the experimental stage, some biomaterials have already been evaluated their efficacy for the reconstruction of female reproductive tissues. In this review, all the biomaterials cited in recent literature that have ever been used and that have a potential for the tissue engineering of female reproductive organs were reviewed, especially focused on bioengineered ovary and uterus.
Biocompatible Materials*
;
Bioengineering
;
Female*
;
Hope
;
Humans
;
Ovary
;
Plastics
;
Pregnancy
;
Tissue Engineering*
;
Transplants
;
Uterus
;
Vagina
5.Platelet Rich Plasma and Culture Configuration Affect the Matrix Forming Phenotype of Bone Marrow Stromal Cells.
Arantza INFANTE ; Eva RUBIO-AZPEITIA ; Patricia SA´NCHEZ ; Rau´l ALBERDI ; Clara I RODRIGUEZ ; Isabel ANDIA
Tissue Engineering and Regenerative Medicine 2017;14(5):567-577
We aim to examine the influence of platelet rich plasma (PRP) and spatial cues in cartilage/bone matrix forming proteins, and to evaluate the mitotic and chemotactic potential of PRP on human mesenchymal stem cells (hMSCs). Directed cell migration towards PRP gradients was assessed in chemotactic chambers, and recorded by time-lapse microscopy. hMSCs cultured in three-dimensional (3D) scaffolds were visualized by scanning electron microscopy; Hoechst dye was used to confirm cell confluence in 3D-constructs and monolayers before experimental treatment. MSCs were treated with 10% PRP lysate or 10% PRP lysate supplemented with TGF-β-based differentiation medium. The expression of cartilage (COL2A1, Sox9, ACAN, COMP), and bone (COL1A1, VEGF, COL10A1, Runx2) fundamental genes was assessed by real time PCR in monolayers and 3D-constructs. PRP had mitotic (p <.001), and chemotactic effect on hMSCs, Ralyleigh test p = 1.02E - 10. Two and three-week exposure of MSCs to PRP secretome in 3Dconstructs or monolayers decreased Sox9 expression (p <0.001 and p = 0.050) and COL2A1, (p = 0.011 and p = 0.019). MSCs in monolayers exposed to PRP showed increased ACAN (p = 0.050) and COMP (p <0.001). Adding TGF-β-based differentiation medium to PRP increased COMP, and COL2A1 expression at gene and protein level, but merely in 3D-constructs, p <0.001. TGF-β addition to monolayers reduced Sox9 (p <0.001), aggrecan (p = 0.004), and VEGF (p = 0.004). Cells exposed to PRP showed no changes in hypertrophy associated genes in either monolayers or 3Dconstructs. Our study suggests hMSCs have high-degree of plasticity having the potential to change their matrix-forming phenotype when exposed to PRP and according to spatial configuration.
Aggrecans
;
Blood Platelets*
;
Bone Marrow*
;
Cartilage
;
Cell Movement
;
Cues
;
Humans
;
Hypertrophy
;
Mesenchymal Stromal Cells*
;
Microscopy
;
Microscopy, Electron, Scanning
;
Phenotype*
;
Plastics
;
Platelet-Rich Plasma*
;
Real-Time Polymerase Chain Reaction
;
Vascular Endothelial Growth Factor A
6.Enrichment and In Vitro Culture of Spermatogonial Stem Cells from Pre-Pubertal Monkey Testes.
Yong Hee KIM ; Hyun Gu KANG ; Bang Jin KIM ; Sang Eun JUNG ; Polash C. KARMAKAR ; Seok Man KIM ; Seongsoo HWANG ; Buom Yong RYU
Tissue Engineering and Regenerative Medicine 2017;14(5):557-566
Spermatogonial stem cells (SSCs) are essential for spermatogenesis throughout the lifespan of the male. However, the rarity of SSCs has raised the need for an efficient selection method, but little is known about culture conditions that stimulate monkey SSC proliferation in vitro. In this study, we report the development of effective enrichment techniques and in vitro culturing of germ cells from pre-pubertal monkey testes. Testis cells were analyzed by fluorescence-activated cell sorting techniques and were transplanted into the testes of nude mice to characterize SSCs. Thy-1-positive cells showed a higher number of colonies than the unselected control after xenotransplantation. Extensive colonization of monkey cells in the mouse testes indicated the presence of highly enriched populations of SSCs in the Thy-1-positive sorted cells. Furthermore, monkey testis cells were enriched by differential plating using extracellular matrix, laminin, and gelatin, and then cultured under various conditions. Isolation of monkey testicular germ cells by differential plating increased germ cell purity by 2.7-fold, following the combinational isolation method using gelatin and laminin. These enriched germ cells actively proliferated under culture conditions involving StemPro medium supplemented with bFGF, GDNF, LIF, and EGF at 37 ℃. These results suggest that the enrichment and in vitro culture method proposed in the present study for harvesting a large number of functionally active monkey SSCs can be applied as the basis for efficient in vitro expansion of human SSCs.
Animals
;
Colon
;
Epidermal Growth Factor
;
Extracellular Matrix
;
Flow Cytometry
;
Gelatin
;
Germ Cells
;
Glial Cell Line-Derived Neurotrophic Factor
;
Haplorhini*
;
Humans
;
In Vitro Techniques*
;
Laminin
;
Male
;
Methods
;
Mice
;
Mice, Nude
;
Spermatogenesis
;
Stem Cells*
;
Testis*
;
Transplantation, Heterologous
7.Micronized Cross-Linked Human Acellular Dermal Matrices: An Effective Scaffold for Collagen Synthesis and Promising Material for Tissue Augmentation.
Tae Hwan PARK ; Woo Young CHOI ; Ju Hee LEE ; Won Jai LEE
Tissue Engineering and Regenerative Medicine 2017;14(5):517-523
Micronized cross-linked human acellular dermal matrices (ADMs) contain the extracellular components necessary for cell integration and tissue remodeling, and have high tensile strength and durability. We hypothesized that such material could serve as a scaffold to enhance the survival of adipocytes in grafted fat. Nude mice (n = 15) were randomly assigned to three groups, each receiving different subcutaneous injections into two dorsal paravertebral areas: fat and saline (control), fat and micronizedADM(E1), and fat and diluted micronizedADM(E2). Digital photographs were taken at 2-week intervals, and the grafted fat volumes and weights were examined after 10 weeks. A histological analysis of the grafted fat was performed, and the expression of vascular endothelial growth factor (VEGF) was examined. The grafted fat volumes decreased over time in all groups; however, at 10 weeks, the grafted fat was better preserved in both experimental groups, with significantly greater weights than in the group C (both, p<0.001). In the experimental groups, there was more regular arrangement of collagen in the graft tissue, whereas relatively thin, disorderly collagen deposition was observed in the control group. In addition, VEGF expression was significantly greater in the experimental groups than in the control group (p<0.001). These results are the first to show that micronized cross-linked human ADMs are an excellent scaffold for promoting adipocyte survival and may be an option for maintaining or promoting the in vivo survival of grafted fat.
Acellular Dermis*
;
Adipocytes
;
Animals
;
Collagen*
;
Humans*
;
Injections, Subcutaneous
;
Mice
;
Mice, Nude
;
Tensile Strength
;
Transplants
;
Vascular Endothelial Growth Factor A
;
Weights and Measures
8.Atelocollagen-based Hydrogels Crosslinked with Oxidised Polysaccharides as Cell Encapsulation Matrix for Engineered Bioactive Stromal Tissue.
Andreea LUCA ; Maria BUTNARU ; Sergiu Stelian MAIER ; Laura KNIELING ; Ovidiu BREDETEAN ; Liliana VERESTIUC ; Daniela Cristina DIMITRIU ; Marcel POPA
Tissue Engineering and Regenerative Medicine 2017;14(5):539-556
Tissue stroma is responsible for extracellular matrix (ECM) formation and secretion of factors that coordinate the behaviour of the surrounding cells through the microenvironment created. It's inability to spontaneously regenerate makes it a good candidate for research studies such as testing various tissue engineered products capable of replacing the stroma in order to assure normal tissue regeneration and function. In this study, a bioactive stroma was obtained considering two main components: 1) the artificial ECM formed using atelocollagen-oxidized polysaccharides hydrogels in which the polysaccharide compound (oxidised gellan or pullulan) has the role of crosslinker and 2) encapsulated stromal cells (dermal fibroblasts, ovarian theca-interstitial and granulosa cells). The cell-hosting ability of the hydrogels is demonstrated by a good diffusion of globular proteins (albumin) while the fibrillar morphology proves to be optimal for cell adhesion. These structural properties and cytocompatibility of the components maintain good cell viability and cell encapsulation for more than 12 days. Nevertheless, the results indicate some differences favouring the gellan crosslinked hydrogels. Ovarian stromal cells functionality was maintained as indicated by hormone secretion, confirming cell-cell signalling in encapsulated and co-culture conditions. In vivo implantation shows the regenerative potential of the cell-populated hydrogels as they are integrated into the natural tissue. The possibility of cryopreserving the hydrogel-cell system, while maintaining both cell viability and hydrogel structural integrity underlines the potential of these ready-to-use hydrogels as bioactive stroma for multipurpose tissue regeneration.
Cell Adhesion
;
Cell Survival
;
Coculture Techniques
;
Diffusion
;
Extracellular Matrix
;
Fibroblasts
;
Hydrogel*
;
Hydrogels*
;
Polysaccharides*
;
Regeneration
;
Stromal Cells
9.Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective.
Nasar Um Min ALLAH ; Zurairah BERAHIM ; Azlina AHMAD ; Thirumulu Ponnuraj KANNAN
Tissue Engineering and Regenerative Medicine 2017;14(5):495-505
Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
Cell Culture Techniques
;
Coculture Techniques*
;
Endothelial Cells*
;
Extracellular Matrix
;
Fibroblasts*
;
Humans*
;
In Vitro Techniques
;
Intercellular Signaling Peptides and Proteins
;
Myocytes, Smooth Muscle
;
Osteoblasts
;
Regeneration
;
Tissue Engineering
10.Fabrication and Characterization of Polyphosphazene/Calcium Phosphate Scaffolds Containing Chitosan Microspheres for Sustained Release of Bone Morphogenetic Protein 2 in Bone Tissue Engineering.
Adnan SOBHANI ; Mohammad RAFIENIA ; Mehdi AHMADIAN ; Mohammad Reza NAIMI-JAMAL
Tissue Engineering and Regenerative Medicine 2017;14(5):525-538
Bone morphogenetic protein 2 has a major role in promoting bone regeneration in tissue engineering scaffolds. Growth factor release rate is a remaining crucial problem in these systems. The aim of this study was to fabricate and characterize a novel calcium phosphate/polyphosphazenes porous scaffold for the sustained release of bone morphogenetic protein 2 in bone tissue engineering. Polyphosphazenes were substituted with 2-dimethylaminoethanol and evaluated by GPC, NMR, and in vitro degradation. Calcium phosphate porous samples were prepared from hydroxyapatite nanoparticles and naphthalene using the sintering method at 1250 ℃ before being composited with poly(dimethylaminoethanol)phosphazenes containing chitosan microspheres loaded with bone morphogenetic protein 2. The characteristics and biodegradability of the product were evaluated by SEM, XRD, and in vitro degradation. Moreover, the release rate and mechanical properties of the scaffolds were investigated. The release behavior was found to be sustained since the scaffolds had been fabricated from polyphosphazenes with a low degradation rate. The release rates of the scaffolds were observed to increase with increasing chitosan microspheres content from 10 to 30%. The bioactivity of the scaffolds depended on the release rate of growth factor while bone morphogenetic protein 2 was able to induce an osteoblast proliferation. The results of cell adhesion and cell viability tests showed that scaffolds displayed a non-toxic behavior and western blot analyses confirmed that the scaffolds loaded with growth factor increased the osteogenic differentiation potential of cells when compared with scaffolds alone. These results demonstrate that these scaffolds can be successfully utilized in bone tissue engineering.
Blotting, Western
;
Bone and Bones
;
Bone Morphogenetic Protein 2*
;
Bone Morphogenetic Proteins*
;
Bone Regeneration
;
Calcium
;
Cell Adhesion
;
Cell Survival
;
Chitosan*
;
Durapatite
;
In Vitro Techniques
;
Methods
;
Microspheres*
;
Nanoparticles
;
Osteoblasts
;
Tissue Engineering*