1.Data-Driven Machine-Learning Quantifies Differences in the Voiding Initiation Network in Neurogenic Voiding Dysfunction in Women With Multiple Sclerosis
Christof KARMONIK ; Timothy BOONE ; Rose KHAVARI
International Neurourology Journal 2019;23(3):195-204
PURPOSE: To quantify the relative importance of brain regions responsible for reduced functional connectivity (FC) in their Voiding Initiation Network in female multiple sclerosis (MS) patients with neurogenic lower urinary tract dysfunction (NLUTD) and voiding dysfunction (VD). A data-driven machine-learning approach is utilized for quantification. METHODS: Twenty-seven ambulatory female patients with MS and NLUTD (group 1: voiders, n=15 and group 2: VD, n=12) participated in a functional magnetic resonance imaging (fMRI) voiding study. Brain activity was recorded by fMRI with simultaneous urodynamic testing. The Voiding Initiation Network was identified from averaged fMRI activation maps. Four machine-learning algorithms were employed to optimize the area under curve (AUC) of the receiver-operating characteristic curve. The optimal model was used to identify the relative importance of relevant brain regions. RESULTS: The Voiding Initiation Network exhibited stronger FC for voiders in frontal regions and stronger disassociation in cerebellar regions. Highest AUC values were obtained with ‘random forests’ (0.86) and ‘partial least squares’ algorithms (0.89). While brain regions with highest relative importance (>75%) included superior, middle, inferior frontal and cingulate regions, relative importance was larger than 60% for 186 of the 227 brain regions of the Voiding Initiation Network, indicating a global effect. CONCLUSIONS: Voiders and VD patients showed distinctly different FC in their Voiding Initiation Network. Machine-learning is able to identify brain centers contributing to these observed differences. Knowledge of these centers and their connectivity may allow phenotyping patients to centrally focused treatments such as cortical modulation.
Area Under Curve
;
Brain
;
Female
;
Gyrus Cinguli
;
Humans
;
Machine Learning
;
Magnetic Resonance Imaging
;
Multiple Sclerosis
;
Urinary Tract
;
Urodynamics
2.Synergistic Activities of Abdominal Muscles Are Required for Efficient Micturition in Anesthetized Female Mice.
Chuan ZHANG ; Yingchun ZHANG ; Yolanda CRUZ ; Timothy B BOONE ; Alvaro MUNOZ
International Neurourology Journal 2018;22(1):9-19
PURPOSE: To characterize the electromyographic activity of abdominal striated muscles during micturition in urethane-anesthetized female mice, and to quantitatively evaluate the contribution of abdominal responses to efficient voiding. METHODS: Cystometric and multichannel electromyographic recordings were integrated to enable a comprehensive evaluation during micturition in urethane-anesthetized female mice. Four major abdominal muscle domains were evaluated: the external oblique, internal oblique, and superior and inferior rectus abdominis. To further characterize the functionality of the abdominal muscles, pancuronium bromide (25 μg/mL or 50 μg/mL, abdominal surface) was applied as a blocking agent of neuromuscular junctions. RESULTS: We observed a robust activation of the abdominal muscles during voiding, with a consistent onset/offset concomitant with the bladder pressure threshold. Pancuronium was effective, in a dose-dependent fashion, for partial and complete blockage of abdominal activity. Electromyographic discharges during voiding were significantly inhibited by applying pancuronium. Decreased cystometric parameters were recorded, including the peak pressure, pressure threshold, intercontractile interval, and voiding duration, suggesting that the voiding efficiency was significantly compromised by abdominal muscle relaxation. CONCLUSIONS: The relevance of the abdominal striated musculature for micturition has remained a topic of debate in human physiology. Although the study was performed on anesthetized mice, these results support the existence of synergistic abdominal electromyographic activity facilitating voiding in anesthetized mice. Further, our study presents a rodent model that can be used for future investigations into micturition-related abdominal activity.
Abdominal Muscles*
;
Animals
;
Electromyography
;
Female*
;
Humans
;
Lower Urinary Tract Symptoms
;
Mice*
;
Muscle, Striated
;
Neuromuscular Junction
;
Pancuronium
;
Physiology
;
Rectus Abdominis
;
Relaxation
;
Rodentia
;
Urinary Bladder
;
Urination*
3.Preliminary Analysis of Brain Footprints in Multiple Sclerosis Females With Detrusor Sphincter Dyssynergia: A Concurrent Urodynamic and Functional Magnetic Resonance Imaging Study
Khue TRAN ; Logan HUBBARD ; Christof KARMONIK ; Timothy B BOONE ; Rose KHAVARI
International Neurourology Journal 2022;26(Suppl 1):S38-46
Purpose:
This study evaluates the grey and white brain matter characteristics in women with multiple sclerosis (MS) and detrusor sphincter dyssynergia (DSD). Grey matter is assessed via the functional connectivity (FC) of brain regions activated during voiding, using functional magnetic resonance imaging (fMRI). Two white matter tracts involved in bladder function, the anterior thalamic radiation (ATR) and superior longitudinal fasciculus (SLF), were evaluated using diffusion tensor imaging.
Methods:
Twenty-seven women with MS (2 groups: no-DSD [n=23] or DSD [n=4]), and 8 healthy controls (HCs) underwent concurrent urodynamic-fMRI evaluation with 4 cycles of bladder filling and emptying. A FC similarity measure (FC_sim) was calculated for each subject to express the similarity of individual FC at voiding initiation compared to all FC patterns. ATR and SLF tracts were traced and their fractional anisotropy (FA) and mean diffusivity (MD) were recorded.
Results:
Mean FC_sim values were significantly different among the 3 groups indicating distinct FC patterns; however, no significant difference was found between DSD and no-DSD groups. DSD group showed trends of lower FA and higher MD— indicating loss of coherence—in all tracts compared to HCs, and in the left and right ATR when compared to MS women with neither DSD nor voiding dysfunction (VD), suggesting more damage in these tracts for MS women with DSD.
Conclusions
Women with MS show distinctly different FC patterns compared to HCs. There are trends showing more damage in the ATR in women with MS and DSD compared to those with neither DSD nor VD.
4.Is the Brainstem Activation Different Between Healthy Young Male and Female Volunteers at Initiation of Voiding? A High Definition 7-Tesla Magnetic Resonance Imaging Study
Bradley SCHOTT ; Darshil CHOKSI ; Khue TRAN ; Christof KARMONIK ; Betsy SALAZAR ; Timothy BOONE ; Rose KHAVARI
International Neurourology Journal 2023;27(3):174-181
Purpose:
Assessing brainstem function in humans through typical neuroimaging modalities has been challenging. Our objective was to evaluate brain and brainstem activation patterns during initiation of voiding in healthy males and females utilizing a 7 Tesla magnetic resonance imaging (MRI) scanner and a noninvasive brain-bladder functional MRI (fMRI) protocol.
Methods:
Twenty healthy adult volunteers (10 males and 10 females) with no history of urinary symptoms were recruited. Each volunteer underwent a clinic uroflow and postvoid residual assessment and was asked to consume water prior to entering the scanner. Anatomical and diffusion tensor images were obtained first, followed by a blood oxygenation level dependent (BOLD) resting-state fMRI (rs-fMRI) during the empty bladder. Subjects indicated when they felt the urge to void, and a full bladder rs-fMRI was obtained. Once completed, the subjects began 5 voiding cycles, where the first 7.5 seconds of each voiding cycle was identified as “initiation of voiding.” BOLD activation maps were generated, and regions of interests with a t-value greater than 2.1 were deemed statistically significant.
Results:
We present 5 distinct regions within the periaqueductal gray (PAG) and pontine micturition center (PMC) with statistically significant activation associated with an initiation of voiding in both men and women, 3 within the PAG and 2 within the PMC. Several additional areas in the brain also demonstrated activation as well. When comparing males to females, there was an overall lower BOLD activation seen in females throughout all regions, with the exception of the caudate lobe.
Conclusions
Our study effectively defines regions within the PAG and PMC involved in initiation of voiding in healthy volunteers. To our knowledge, this is the first study investigating differences between male and female brainstem activation utilizing an ultra-high definition 7T MRI.
5.Voiding Dysfunction in Old Male Rats Associated With Enlarged Prostate and Irregular Afferent-Triggered Reflex Responses
Chuan ZHANG ; Xuhong LI ; Timothy B. BOONE ; Yolanda CRUZ ; Yingchun ZHANG ; Alvaro MUNOZ
International Neurourology Journal 2020;24(3):258-269
Purpose:
This study was conducted to evaluate the hypothesis that an enlarged prostate in old rats may lead to complications associated with voiding dysfunction involving ionotropic P2X2/3-type purinergic receptors
Methods:
Intact animals were divided into male young (MYR; 8–10 weeks old) and male old (MOR; 20 months old) rats. The animals underwent simultaneous detrusor electromyography (EMG) and suprapubic cystometry (CMG) under urethane anesthesia. Immunofluorescence techniques were used to evaluate prostatic autonomic innervation and P2X3R expression in bladder urothelial cells. The functional role of P2X3R was characterized by intramuscular application of AF-353, a selective P2X2/3R antagonist.
Results:
The prostate index significantly increased in MOR, suggestive of an enlarged prostate affecting micturition patterns. Significant EMG and CMG differences were found between MYR and MOR. Higher immunoreactivity for P2X2/3R in the urothelial layer and for prostatic neurofilaments was seen in MOR. Systemic inhibition of P2X2/3R had minimal effects on MYR responsiveness, but improved voiding function in MOR with a marked decrease of intravesical pressure and bladder contractile responses.
Conclusions
The data support the hypothesis that an enlarged prostate in MOR may contribute to voiding dysfunction involving activation of P2X2/3R, which enhances a prostate-bladder reflex. This reflex may increase bladder afferent transmission and activation of increased prostate innervation, leading to voiding dysfunction.
6.Electrical Activity of the Bladder Is Attenuated by Intravesical Inhibition of P2X2/3 Receptors During Micturition in Female Rats.
Betsy H SALAZAR ; Kristopher A HOFFMAN ; Chuan ZHANG ; Alex KAVANAGH ; Yingchun ZHANG ; Timothy B BOONE ; Alvaro MUNOZ
International Neurourology Journal 2017;21(4):259-269
PURPOSE: To simultaneously monitor electrical discharges in various bladder regions and the external urethral sphincter (EUS) during voiding contractions, and to assess the functional role of myogenic modulation of the lower urinary tract (LUT) by ionotropic purinergic receptors containing the P2X3 subunit. METHODS: Female Sprague-Dawley rats were anesthetized with urethane, and implanted with a suprapubic catheter for open cystometry. Flexible microelectrodes were placed ventrally in the bladder dome, upper bladder, lower bladder, and bladder base, along with the middle section of the exposed EUS. Intravesical P2X3-containing receptors were blocked with AF-323, a specific P2X3-P2X2/3 receptor antagonist. A digital electrophysiology amplifier was used to record electrical and cystometric signals throughout the LUT. RESULTS: Electrical activity in the LUT started before effective voiding contractions. Bladder pressure and electrical waveforms showed consistent out-of-phase activity when compared with the recordings made at the EUS. This pattern was also observed during voiding contractions in the presence of AF-353, supporting the hypothesis that during bladder distension, activation of P2X3-containing receptors is required for voiding contractions. Furthermore, the inhibition of P2X3-containing receptors significantly decreased the amplitude of electrical signals in the urinary bladder, but not the base or EUS. CONCLUSIONS: Our results provide novel information about the regulation of the micturition process by P2X3-containing receptors located in the inner layers of the bladder.
Animals
;
Catheters
;
Electrophysiology
;
Female*
;
Humans
;
Lower Urinary Tract Symptoms
;
Microelectrodes
;
Purinergic P2X Receptor Antagonists
;
Rats*
;
Rats, Sprague-Dawley
;
Receptors, Purinergic
;
Urethane
;
Urethra
;
Urinary Bladder*
;
Urinary Tract
;
Urination*