1.Advances in the study of Mycobacterium tuberculosis protein phosphatase and its inhibitors.
Tieshan TENG ; Honghai WANG ; Jianping XIE
Acta Pharmaceutica Sinica 2011;46(12):1420-8
Reversible protein phosphorylation regulates multiple biochemical events. Mycobacterium tuberculosis phosphatases play important roles in regulating the pathogen physiology and interference of host signaling. They are also involved in the evasion of host immune response and blockage of the phagosome-lysosome fusion. Selective inhibition of phosphatase represents an ideal new avenue of anti-tuberculosis drug design. In this paper, we update the progresses about the regulation network of Mycobacterium tuberculosis phosphatases including MptpA, MptpB, MstP, SapM and their inhibitors. These serve as the basis for further antituberculosis drug target.
2.Development of new anti-tuberculosis drugs: the strategy of unconventional microbial culture and silencing gene activation.
Tieshan TENG ; Longxiang XIE ; Jianping XIE
Chinese Journal of Biotechnology 2018;34(8):1306-1315
Tuberculosis (TB), caused by Mycobacterium tuberculosis, has become a major human infectious disease. The existing first-line and second-line TB drugs have poor treatment outcomes in patients with MDR-TB and XDR-TB. There is an urgent need for new and better drugs to treat tuberculosis due to lengthy and complex treatment regimens and a rising problem of drug resistance. Microbial-derived natural products have revealed enormous reservoirs of as yet untapped lead compounds. In this review, we discuss the strategies that have been developed in bacteria and fungi to isolation of non-culturable microorganisms and activation of silent biosynthetic gene clusters involved in the study of microbial-derived natural products. This review also highlights recent advances in microbial-derived natural products with anti-tuberculosis activity using these methods.