2.Study on Online Doctor Response Adoption Prediction Based on Multimodal Data Mining
Weiwei DENG ; Tianwei YU ; Han CHEN ; Guohe FENG
Journal of Medical Informatics 2024;45(2):44-51
Purpose/Significance To use multimodal data analysis method to mine medical Q&A data in online healthcare platforms and predict whether patients will adopt online doctors'responses.Method/Process First,numerical,categorical,textual,and visual data related to doctor-patient Q&A are obtained from online healthcare platforms,and three datasets of acute disease,chronic disease and mixed disease are constructed according to disease types.Then,normalization,one-hot encoding,Med-BERT,and convolutional neural network are used respectively to process numerical,categorical,textual,and visual data.Finally,a gradient boosting decision tree is used to predict whether patients will adopt online doctors'responses.Result/Conclusion Doctors'profile pictures can improve the prediction effect of online doctor response adoption,and multimodal data mining can effectively predict the response adoption.
3.The research status and development trends of brain-computer interfaces in medicine.
Qi CHEN ; Tianwei YUAN ; Liwen ZHANG ; Jin GONG ; Lu FU ; Xue HAN ; Meihua RUAN ; Zhenhang YU
Journal of Biomedical Engineering 2023;40(3):566-572
Brain-computer interfaces (BCIs) have become one of the cutting-edge technologies in the world, and have been mainly applicated in medicine. In this article, we sorted out the development history and important scenarios of BCIs in medical application, analyzed the research progress, technology development, clinical transformation and product market through qualitative and quantitative analysis, and looked forward to the future trends. The results showed that the research hotspots included the processing and interpretation of electroencephalogram (EEG) signals, the development and application of machine learning algorithms, and the detection and treatment of neurological diseases. The technological key points included hardware development such as new electrodes, software development such as algorithms for EEG signal processing, and various medical applications such as rehabilitation and training in stroke patients. Currently, several invasive and non-invasive BCIs are in research. The R&D level of BCIs in China and the United State is leading the world, and have approved a number of non-invasive BCIs. In the future, BCIs will be applied to a wider range of medical fields. Related products will develop shift from a single mode to a combined mode. EEG signal acquisition devices will be miniaturized and wireless. The information flow and interaction between brain and machine will give birth to brain-machine fusion intelligence. Last but not least, the safety and ethical issues of BCIs will be taken seriously, and the relevant regulations and standards will be further improved.
Humans
;
Brain-Computer Interfaces
;
Medicine
;
Algorithms
;
Artificial Intelligence
;
Brain