1.Frontier hot trends in ischemic stroke and vascular regeneration based on bibliometric analysis
Tianqing XIA ; Mengwei RONG ; Cunyan DAN ; Ting YANG ; Zhibin DING ; Lijuan SONG ; Cungen MA
Chinese Journal of Tissue Engineering Research 2024;28(23):3692-3698
BACKGROUND:Vascular regeneration,as one of the crucial repair processes after its onset,necessitates visual analysis between the two. OBJECTIVE:To analyze the literature on ischemic stroke and vascular regeneration in the past decade using bibliometrics and sort out the current status,hotspots,and future research trends in this field. METHODS:We used a bibliometric approach to search the Web of Science database for literature on ischemic stroke and vascular regeneration published between January 2011 and May 2023.The obtained data were systematically analyzed using the VOSviewer visualization software to identify the number of articles,countries,keywords,institutions,authors,citations,and trends. RESULTS AND CONCLUSION:We searched and selected 1 484 articles and found that the relationship between ischemic stroke and vascular regeneration has emerged as a research hotspot in the cerebrovascular field,with the number of published articles continuing to rise.Most of these articles were authored by institutions from China and the United States.Shanghai Jiao Tong University was the most cited institution.The most influential author was Hermann DM,whose article had been cited 1 003 times.The current hot research topics in the field include extracellular vesicles,microRNAs and mesenchymal stem cells,which are being studied for their correlations with relevant diseases.To conclude,the bibliometric analysis provides a visual analysis of ischemic stroke and vascular regeneration,which is found to be an emerging focus as well as a valuable reference for future trends and highlights in ischemic stroke and vascular regeneration.
2.Preparation of cinnamomi cortex oil microspheres based on porous silicon dioxide and its property characterizations.
Chun-Xia ZHU ; Yan-Rong JIANG ; Zhen-Hai ZHANG ; Dong-Mei DING ; Xiao-Bin JIA
China Journal of Chinese Materia Medica 2013;38(20):3479-3483
To determine the optimum process for preparing Cinnamomi Cortex oil microspheres based on porous silicon dioxide. After porous silica dioxide adsorbed Cinnamomi Cortex oil, Cinnamomi Cortex oil microspheres were prepared by the dropping method, with sodium alginate as the skeleton materials. The preparation process was optimized through the L(9) (3(4)) orthogonal test design, with microspheres diameter, distribution, drug loading capacity and entrapment efficiency as the indexes. The cinnamon volatile oil microspheres were characterized by scanning election microscope (SEM), thermogravimetric analysis (TGA), and infrared (IR) spectroscopy. An in vitro drug release experiment was conducted. The results showed that the microspheres prepared with the optimal process parameters were in good shape, even in size and good in dispersibility, with an average diameter of 1.61 mm, an average drug loading capacity of 32.85%, an entrapment efficiency of 94.79%. The maximum drug release capacity reached 72.6%, 95.0%, 97.4%, respectively, under pH 4.0, 6.8, 7.4 in 6 hours. Meanwhile, microsphere generation was tested by IR, TGA and other methods. The established optimum process for preparing Cinnamomi Cortex oil microspheres was proved to be stable and practical.
Alginates
;
chemistry
;
Chemistry, Pharmaceutical
;
Cinnamomum
;
chemistry
;
Drug Carriers
;
chemistry
;
Drugs, Chinese Herbal
;
chemistry
;
Glucuronic Acid
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Microspheres
;
Particle Size
;
Porosity
;
Silicon Dioxide
;
chemistry
;
Solubility
3.Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1.
Rong CHEN ; Shiqing ZHANG ; Fang LIU ; Lin XIA ; Chong WANG ; Siamak SANDOGHCHIAN SHOTORBANI ; Huaxi XU ; Subrata CHAKRABARTI ; Tianqing PENG ; Zhaoliang SU
Acta Pharmaceutica Sinica B 2023;13(1):128-141
Cardiac-resident macrophages (CRMs) play important roles in homeostasis, cardiac function, and remodeling. Although CRMs play critical roles in cardiac regeneration of neonatal mice, their roles are yet to be fully elucidated. Therefore, this study aimed to investigate the dynamic changes of CRMs during cardiac ontogeny and analyze the phenotypic and functional properties of CRMs in the promotion of cardiac regeneration. During mouse cardiac ontogeny, four CRM subsets exist successively: CX3CR1+CCR2-Ly6C-MHCII- (MP1), CX3CR1lowCCR2lowLy6C-MHCII- (MP2), CX3CR1-CCR2+Ly6C+MHCII- (MP3), and CX3CR1+CCR2-Ly6C-MHCII+ (MP4). MP1 cluster has different derivations (yolk sac, fetal liver, and bone marrow) and multiple functions population. Embryonic and neonatal-derived-MP1 directly promoted cardiomyocyte proliferation through Jagged-1-Notch1 axis and significantly ameliorated cardiac injury following myocardial infarction. MP2/3 subsets could survive throughout adulthood. MP4, the main population in adult mouse hearts, contributed to inflammation. During ontogeny, MP1 can convert into MP4 triggered by changes in the cellular redox state. These findings delineate the evolutionary dynamics of CRMs under physiological conditions and found direct evidence that embryonic and neonatal-derived CRMs regulate cardiomyocyte proliferation. Our findings also shed light on cardiac repair following injury.
4.Mechanism analysis of repeatedly steamed and sundried Rehmanniae Radix Praeparata in delaying brain aging in ovariectomized mice based on proteomics.
Fei-Xia YAN ; Xu-Dong ZHU ; Song WANG ; Wei YAO ; Yong-Yan XIE ; Rui-Qing ZHOU ; Yao-Hui CHEN ; Yi WU ; Li-Ping HUANG
China Journal of Chinese Materia Medica 2022;47(1):141-150
The present study explored the effect and mechanism of repeatedly steamed and sundried Rehmanniae Radix Praeparata(RRP) in delaying brain aging in ovariectomized mice. After ovariectomy, the mice were randomly divided into a model group, an estradiol valerate group(0.3 mg·kg~(-1)), and low-(1.0 g·kg~(-1)), medium-(2.0 g·kg~(-1)), and high-dose(4.0 g·kg~(-1)) RRP groups, and a sham operation group was also set up, with 15 mice in each group. One week after the operation, intragastric administration was carried out for 15 consecutive weeks. The step-down test and Morris water maze test were used to detect the behavioral changes of mice. HE staining and Nissl staining were used to observe the morphological changes of mouse brain tissues. Immunohistochemistry was used to detect the expression of Aβ and ER_β in mouse brain tissues. The serum estrogen levels and cholinesterase and cholinesterase transferase levels in brain tissues of mice were detected by assay kits. The extracted hippocampal protein was detected by the Nano-ESI-LC-MS system, identified by the Protein Discovery, and analyzed quantitatively and qualitatively by the SIEVE. The PANTHER Classification System was used for GO analysis and KEGG pathway enrichment analysis of the differential proteins. Compared with the sham operation group, the model group showed decreased learning and memory ability, shortened step-down latency(P<0.05), prolonged escape latency(P<0.05), reduced platform crossings and residence time in the target quadrant, scattered nerve cells in the hippocampus with enlarged intercellular space, increased expression of Aβ-positive cells(P<0.05), declining expression of ER_β-positive cells and estrogen level(P<0.05), and weakened cholinergic function(P<0.05). Compared with the model group, the RRP groups showed improved learning and memory ability, prolonged step-down latency(P<0.05), increased estrogen level(P<0.05), neatly arranged nerve cells in the hippocampus with complete morphology, declining Aβ-positive cells, and elevated expression of ER_β-positive cells. A total of 146 differential proteins were screened out by proteomics, and KEGG pathway enrichment yielded 75 signaling pathways. The number of proteins involved in the dopaminergic synapse signaling pathway was the largest, with 13 proteins involved. In summary, RRP can delay brain aging presumedly by increasing the level of estrogen, mediating the dopaminergic synapse signaling pathway, and improving cholinergic function.
Aging
;
Animals
;
Female
;
Hippocampus/metabolism*
;
Learning
;
Mice
;
Plant Extracts
;
Proteomics
;
Rehmannia