1.Regulation of the TGF-β type I Receptor/Smad Pathway Inhibits Renal Fibrosis by Shenkang Injection
Tianmeng CUI ; Gengzhen HUANG ; Yingying ZHANG ; Yuerong MA
World Science and Technology-Modernization of Traditional Chinese Medicine 2023;25(10):3355-3363
Objective Chinese herbal injections called Shenkang injections(SKI)have become widely used for treating chronic kidney disease in the clinic.An investigation into the underlying mechanisms of SKI inhibition of renal tubular epithelial cell trans differentiation treated with TGF-β1 was carried out in this study.Methods To create an in vitro model of RF,HK-2 cells were treated with TGF-1(10 ng·mL-1)at 37℃for 48 h.After the cells were treated with SKI for 48 h,the morphology of the cells was observed by electron microscope.And Western blot,RT-PCR and immunofluorescence techniques were used to detect α-Smooth muscle actin(α-SMA),type III collagen(COI-Ⅲ),TGF-β1,Smad3,Smad7 and TβR-I expression changes of proteins and genes.Results SKI can significantly reduce expressed proteins and genes related to renal fibrosis,such as α-Smooth muscle actin(α-SMA)and type Ⅲ collagen(COI-Ⅲ).SKI control the production of proteins associated with the TGF-β/Smad signaling pathway.By downregulating TGF-β1,Smad3,and TβR-I protein expression,as well as upregulating Smad7 protein expression,it is able to prevent cell trans differentiation.Conclusions SKI can inhibit renal tubular epithelial cell mesenchymal trans differentiation.In addition,this drug may prevent chronic kidney disease by downregulating the expression of TβR-I and regulating the TGF-β/Smad pathway-related molecules.
2.Buyang Huanwutang Treats Diabetic Peripheral Neuropathy via Mitochondrial Transport in Rats
Jiaxin TIAN ; Jingwen AN ; Tianya ZHANG ; Zhihong ZHANG ; Wang ZHANG ; Linchun SONG ; Tianmeng DUAN ; Ying BEN
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(13):27-36
ObjectiveTo investigate the mechanism of Buyang Huanwutang in treating diabetic peripheral neuropathy (DPN) via mitochondrial transport. MethodDiabetes in SD rats was induced by a high-carbohydrate/high-fat diet and intraperitoneal injection of streptozotocin (STZ). The 45 diabetic rats were randomly assigned into a DPN group, an alpha-lipoic acid (60 mg·kg-1·d-1) group, and a Buyang Huanwutang (15 g·kg-1·d-1) group, with 15 rats in each group. Fifteen normal SD rats were fed with the standard diet and set as the control group. The rats were administrated with corresponding drugs by gavage for 12 weeks. The paw withdraw threshold (PWT) and motor nerve conduction velocity (MNCV) were measured at the end of medication, and the sciatic nerve and the bilateral dorsal root ganglia of L4-5 were collected. The injury model of NSC34 cells was established by treating with 50 mmol·L-1 glucose and 250 μmol·L-1 sodium palmitate. The NSC34 cells were then randomly assigned into a blank (10% blank serum) group, a DPN (10% blank serum) group, an apha-lipoic acid (10% apha-lipoic acid-containing serum) group, a Buyang Huanwutang (10% Buyang Huanwutang-containing serum) group, and a Buyang Huanwutang + Compound C (CC) (10% Buyang Huanwutang-containing serum + 10 μmol·L-1 CC) group. The cell intervention lasted for 24 h. The immunofluorescence method, immunohistochemistry, and Western blot were employed to determine the expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylated cAMP-response element binding protein (p-CREB), kinesin family member 5A (KIF5A), and dynein cytoplasmic 1 intermediate chain 2 (DYNC1I2). ResultCompared with the control group, the DPN group of rats showed increased fasting blood glucose (P<0.01), decreased MNCV and PWT (P<0.01), down-regulated expression of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.01), and up-regulated expression of DYNC1I2 (P<0.01). Compared with the DPN group, drug intervention groups showed increased MNCV and PWT (P<0.01), up-regulated expression of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.05, P<0.01), and down-regulated expression of DYNC1I2 (P<0.05, P<0.01). The Buyang Huanwutang group had higher levels of MNCV and KIF5A (P<0.05) and lower level of DYNC1I2 (P<0.01) than the apha-lipoic acid group. Compared with the blank group, the DPN group of NSC34 cells showed decreased levels of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.01) and increased level of DYNC1I2 (P<0.01). The apha-lipoic acid group and Buyang Huanwutang group had higher levels of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.05, P<0.01) and lower level of DYNC1I2 (P<0.01) in NSC34 cells than the DPN group. Buyang Huanwutang group had higher KIF5A level (P<0.05) in NSC34 cells than the apha-lipoic acid group. Moreover, the Buyang Huanwutang + CC group had lower levels of KIF5A, DYNC1I2, p-AMPK/AMPK, and p-CREB/CREB (P<0.01) in NSC34 cells than the Buyang Huanwutang group. ConclusionBuyang Huanwutang may regulate mitochondrial anterograde transport via the AMPK/CREB pathway to prevent and treat DPN.
3.Ameliorative effect of scutellarin on acute alcohol brain injury in mice.
Tianmeng ZHANG ; Kun WANG ; Hui FAN ; Qiankun YANG ; Xiao ZHANG ; Feixue LIU ; Xin FENG ; Yi CHEN ; Daoyang TENG ; Panpan ZHAO ; Jingquan DONG
Journal of Zhejiang University. Science. B 2022;23(3):258-264
Drinking culture has high significance in both China and the world, whether in the entertainment sector or in social occasions; according to the World Health Organization's 2018 Global Alcohol and Health Report, about 3 million people died from excessive drinking in 2016, accounting for 5.3% of the total global deaths that year. Oxidative stress and inflammation are the most common pathological phenomena caused by alcohol abuse (Snyder et al., 2017). Scutellarin, a kind of flavonoid, is one of the main active ingredients extracted from breviscapine. It exerts anti-inflammatory, antioxidant, and vasodilation effects, and has been used to treat cardiovascular diseases and alcoholic liver injury. Although scutellarin can effectively alleviate multi-target organ injury induced by different forms of stimulation, its protective effect on alcoholic brain injury has not been well-defined. Therefore, the present study established an acute alcohol mice brain injury model to explore the effect of scutellarin on acute alcoholic brain injury. The study was carried out based on the targets of oxidative stress and inflammation, which is of great significance for the targeted therapy of clinical alcohol diseases.
Animals
;
Apigenin/therapeutic use*
;
Brain Injuries/drug therapy*
;
Glucuronates/therapeutic use*
;
Humans
;
Mice
;
Oxidative Stress