1.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
2.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
3.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
4.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
5.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
6.Reoxygenation improves reduced hypothalamic leptin responsiveness induced by intermittent hypoxia in obese rats
Menglu DONG ; Tian ZHU ; Junwen MA ; Xiaohong DU ; Yuan FENG
Journal of Southern Medical University 2024;44(9):1696-1703
Objective To evaluate the effects of intermittent hypoxia-reoxygenation(IHR)on body weight,diet and water intake,circulating metabolites,and responses to central leptin injection in a rat model of diet-induced obesity(DIO).Methods Rat models of DIO established by 12-week high-fat diet(HFD)feeding were randomized into normoxia group(n=15),intermittent hypoxia group(6%O2,30 cycles/h,8 h/day for 4 weeks;n=15),and IHR group(2 weeks of intermittent hypoxia followed by 2 weeks of reoxygenation;n=15).Body weight,diet and water intake of the rats were recorded,and circulating leptin,IL-6,and Ang-Ⅱ levels were detected.After IHR treatment,the rats received intracerebroventricular injection of 4 μg leptin,and the hypothalamus and liver were taken 1 h later for detecting POMC,FRA-1 and FRA-2 expressions in the hypothalamus using immunohistochemistry,POMC,pSTAT3 and LepR expressions in the hypothalamus using Western blotting,and LepR mRNA expression in the hypothalamus and liver using RT-PCR.Results The rats in intermittent hypoxia group showed significantly increased weight gain,food intake and elevated systemic inflammatory cytokine levels.Intermittent hypoxia obviously inhibited the expression of POMC,lowered the expressions of FRA-1 and pSTAT3,reduced the responsiveness of the rats to exogenous leptin,and downregulated the mRNA and protein expression of LepR.Two weeks of reoxygenation treatment obviously reduced intermittent hypoxia-induced weight gain and metabolic disorder and improved leptin sensitivity of the rats.Conclusion Prolonged intermittent hypoxia impairs hypothalamic leptin signaling by downregulating LepR expression to promote weight gain in obese rats,which can be improved by reoxygenation treatment.
7.Screening and analysis of differentially expressed genes for calcium homeostasis in ameloblasts with high fluoride intervention
Ting HUANG ; Xia LIU ; Zhu WANG ; Ting CHEN ; Bin CHEN ; Guohui BAI ; Jiayuan WU ; Yuan TIAN
Chinese Journal of Tissue Engineering Research 2024;28(16):2481-2487
BACKGROUND:Fluorosis is a disorder of enamel development caused by long-term intake of large amounts of fluoride during enamel development. OBJECTIVE:To further explore the molecular mechanism of dental fluorosis formation by screening the differentially expressed genes associated with calcium homeostasis in ameloblasts by transcriptome sequencing technology. METHODS:LS8 cells were treated with 0,0.4,0.8,1.6,3.2 and 6.4 mmol/L sodium fluoride(NaF)for 24,48 and 72 hours to observe the effects of different concentrations of NaF on the morphology,cell activity and intracellular Ca2+ concentration of LS8 cells.The differentially expressed genes were screened by transcriptome sequencing and validated. RESULTS AND CONCLUSION:After 24 hours of treatment,the cells treated with 0,0.4,and 0.8 mmol/L NaF were in good growth condition,with increased cell number and clear cell outline.When the NaF concentration was≥1.6 mmol/L,the cells were gradually shrunken and became smaller and the number of cells decreased with the increase of NaF concentration.After 48 and 72 hours of treatment,the number of cells increased in the 0,0.4 mmol/L NaF groups,while gradually decreased in the 0.8,1.6,3.2 mmol/L NaF groups,with rounded and smaller cell morphology.The cells in the 6.4 mmol/L NaF group were shrunken,rounded and suspended in the medium,with almost no adherent cells.When treated with the same concentration of NaF,LS8 cells were in optimal growth after 24 hours of treatment.Results from cell counting kit-8 assay showed that when treated with the same concentration of NaF,the cell activity decreased with the increase of treatment time;when the treatment time was the same,the cell activity decreased with the increase of NaF concentration.After 24 hours of treatment,the intracellular Ca2+ concentration increased with the increase of NaF concentration.Transcriptome sequencing analysis identified genes involved in the regulation of cellular calcium homeostasis:Hsp90b1,Canx,Calr,and Hspa5 that were significantly upregulated(P<0.05)and Cacna1a that was significantly downregulated(P<0.05).To conclude,the inhibitory effect of NaF on LS8 cell proliferation may be related to the abnormal increase in intracellular Ca2+ concentration,and the mechanism may be caused by the upregulation of the expression of protein processing and synthesis pathways Hsp90b1,Canx,Calr,and Hspa5 and the downregulation of the expression of calcium signaling pathway Cacna1a.
8. Mechanism of levosimendan in treating hypoxic pulmonary hypertension based on network pharmacology and molecular docking technology
Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU ; Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU ; Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU
Chinese Pharmacological Bulletin 2024;40(3):565-573
Aim To explore the efficacy of levosimendan on hypoxia pulmonary hypertension through animal experiments, and to further explore the potential mechanism of action using network pharmacological methods and molecular docking technique. Methods The rat model of hypoxia pulmonary hypertension was constructed to detect right heart systolic pressure and right heart remodeling index. HE , Masson, and VG staining were core targets were screened out. GO and KEGG pathway enrichment analysis were performed using the DAVID database. Molecular docking of the core targets was performed with the AutoDock software. Results The results of animal experiments showed that levosimendan had obvious therapeutic effect on hypoxia pulmonary hypertension. The network pharmacology results showed that SRC, HSP90AA1, MAPK1, PIK3R1, AKT1, HRAS, MAPK14, LCK, EGFR and ESR1 used to analyze the changes of rat lung histopathology. Search the Swiss Target Prediction, DrugBank Online, BatMan, Targetnet, SEA, and PharmMapper databases were used to screen for drug targets. Disease targets were retrieved from the GeneCards, OMIM databases. The "drug-target-disease" network was constructed after identification of the two intersection targets. The protein interaction network was constructed and the were the key targets to play a therapeutic role. Molecular docking showed good docking of levosimendan with all the top five core targets with degree values. Conclusions Levosimendan may exert a therapeutic effect on hypoxia-induced pulmonary hypertension through multiple targets.
9.Evaluation of Coronary Microcirculatory Function in Patients With Hypertrophic Cardiomyopathy and Analysis of Preliminary Results
Haobo XU ; Fasheng ZHU ; Weixian YANG ; Jiansong YUAN ; Juan WANG ; Tianjie WANG ; Yilu LIU ; Yong WANG ; Tao TIAN ; Shubin QIAO
Chinese Circulation Journal 2024;39(10):983-988
Objectives:To evaluate the coronary microcirculatory function in patients with hypertrophic cardiomyopathy(HCM). Methods:Patients who diagnosed with HCM and underwent the measurement of index of microcirculatory resistance(IMR)using pressure-sensing guide wire from November 2021 to April 2023 were prospectively included.Coronary microcirculatory dysfunction(CMD)was defined as IMR≥25 U and patients were grouped accordingly to compare the clinical characteristics. Results:A total of 25 HCM patients were included.Mean age was(58.4±13.3)years,18 were men and mean body mass index was(26.7±3.6)kg/m2.Coronary microcirculatory function was successfully evaluated in all patients and the mean value of IMR was(30.5±15.3)U.There were 15 patients with CMD.Baseline clinical characteristics,laboratory examinations and medications were simialr between patients with and without CMD.The maximal left ventricular wall was significant thicker in patients with CMD compared with that in patients without CMD([20.2±2.8]mm vs.[16.9±2.3]mm,P=0.005).There was no significant difference in other echocardiographic parameters between two groups(all P>0.05).In the range of IMR value less than 50 U(n=22),there was a significant linear positive correlation between maximal left ventricular wall thickness and IMR(r=0.423,P=0.049).There was no significant difference in coronary flow reserve and fractional flow reserve between two groups. Conclusions:The severity of CMD is positively correlated with left ventricular wall thickness in HCM patients.
10.Expert consensus on pediatric orthodontic therapies of malocclusions in children
Zhou CHENCHEN ; Duan PEIPEI ; He HONG ; Song JINLIN ; Hu MIN ; Liu YUEHUA ; Liu YAN ; Guo JIE ; Jin FANG ; Cao YANG ; Jiang LINGYONG ; Ye QINGSONG ; Zhu MIN ; Jiang BEIZHAN ; Ruan WENHUA ; Yuan XIAO ; Li HUANG ; Zou RUI ; Tian YULOU ; Gao LI ; Shu RUI ; Chen JIANWEI ; Liu RENKAI ; Zou SHUJUAN ; Li XIAOBING
International Journal of Oral Science 2024;16(2):186-196
Malocclusion,identified by the World Health Organization(WHO)as one of three major oral diseases,profoundly impacts the dental-maxillofacial functions,facial esthetics,and long-term development of~260 million children in China.Beyond its physical manifestations,malocclusion also significantly influences the psycho-social well-being of these children.Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition,by mitigating the negative impact of abnormal environmental influences on the growth.Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development,ranging from fetal stages to the early permanent dentition phase.From an economic and societal standpoint,the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated,underlining its profound practical and social importance.This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children,emphasizing critical need for early treatment.It elaborates on corresponding core principles and fundamental approaches in early orthodontics,proposing comprehensive guidance for preventive and interceptive orthodontic treatment,serving as a reference for clinicians engaged in early orthodontic treatment.

Result Analysis
Print
Save
E-mail