1.Compound Xishu Granules Inhibit Proliferation of Hepatocellular Carcinoma Cells by Regulating Ferroptosis
Yuan TIAN ; Yuxi WANG ; Zhen LIU ; Yuncheng MA ; Hongyu ZHU ; Xiaozhu WANG ; Qian LI ; Jian GAO ; Weiling WANG ; Wenhui XU ; Ting WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):37-45
ObjectiveTo study the mechanism of compound Xishu granules (CXG) in inhibiting the proliferation of hepatocellular carcinoma cells by regulating ferroptosis. MethodsThe transplanted tumor model of human Huh7 was established with nude mice and the successfully modeled mice were randomized into model, Fufang Banmao (0.21 g·kg-1), low-dose (1.87 g·kg-1) CXG, medium-dose (3.74 g·kg-1) CXG, and high-dose (7.49 g·kg-1) CXG groups. Mice were administrated with drinking water or CXG for 28 days, and the body weight and tumor volume were measured every 4 days. Hematoxylin-eosin staining was employed to observe the histopathological changes of tumors. The cell-counting kit-8 (CCK-8) was used to examine the survival rate of Huh7 cells treated with different concentrations (0, 31.25, 62.5, 125, 250, 500, 1 000 mg·L-1) of CXG for 24 h and 48 h. CA-AM, DCFH-DA, and C11-BODIPY581/591 fluorescent probes were used to determine the intracellular levels of ferrous ion (Fe2+), reactive oxygen species (ROS), and lipid peroxide (LPO), respectively. The colorimetric method was employed to measure the levels of glutathione (GSH) and superoxide dismutase (SOD). Western blot was employed to determine the protein levels of glutathione peroxidase 4 (GPX4), transferrin receptor 1 (TFR1), and ferritin heavy chain 1 (FTH1), respectively. ResultsIn the animal experiment, compared with the model group, the drug treatment groups showed reductions in the tumor volume from day 12 (P<0.01). After treatment, the Fufang Banmao and low-, medium-, and high-dose CXG groups had lower tumor volume, relative tumor volume, and tumor weight than the model group (P<0.05), with tumor inhibition rates of 48.99%, 79.93%, 91.38%, and 97.36%, respectively. Moreover, the CXG groups had lower tumor volume and relative tumor volume (P<0.05 in all the three dose groups) and lower tumor weight (P<0.05 in medium-dose and high-dose groups) than the Fufang Banmao group. Compared with the model group, the drug treatment groups showed reduced number of tumor cells, necrotic foci with karyopyknosis, nuclear fragmentation, and nucleolysis, and the high-dose CXG group showed an increase in the proportion of interstitial fibroblasts. In the cell experiment, compared with the blank group, CXG reduced the survival rate of Huh7 cells in a dose-dependent manner after incubation for 24 h and 48 h (P<0.05). Compared with the blank group, the RSL3 group and the low-, medium-, and high-dose CXG groups showed a decrease in the relative fluorescence intensity of CA-AM and increases in the fluorescence intensity of DCFH-DA and fluorescence ratio of C11-BODIPY581/591, which indicated elevations in the levels of Fe2+ (P<0.01), ROS (P<0.05), and LPO (P<0.01), respectively. Compared with the blank group, the RSL3 and low-, medium-, and high-dose CXG groups showed lowered levels of GSH and SOD (P<0.05). In addition, the RSL3 group and the medium- and high-dose CXG groups showed down-regulated expression of GPX4 and FTH1 (P<0.05), and the low- and high-dose CXG groups presented up-regulated expression of TFR1 (P<0.05). ConclusionCXG suppresses the proliferation of hepatocellular carcinoma cells by inducing ferroptosis via downregulating the GSH-GPX4 signaling axis and increasing intracellular Fe2+and LPO levels.
2.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
3.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
4.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
5.Rbbp6-Mediated Bmal1 Ubiquitination Inhibits YAP1 Signaling Pathway to Promote Ferroptosis in Diabetes-Induced Testicular Damage
Yuan TIAN ; Zhiqiang ZHU ; Jun QIAO ; Bei LIU ; Yuehai XIAO
Diabetes & Metabolism Journal 2025;49(2):210-224
Background:
Diabetes-induced testicular damage (DITD) is a common complication of diabetes. We investigated underlying mechanism of retinoblastoma-binding protein 6 (Rbbp6)-mediated brain and muscle ARNT-like 1 (Bmal1) ubiquitination in modulating ferroptosis in DITD.
Methods:
Spermatogenic cell apoptosis and viability were measured by flow cytometry and cell counting kit 8 (CCK-8), respectively. The impact of Rbbp6 and Bmal1 on ferroptosis was assessed by determining expression of ferroptosis markers glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11), and levels of malondialdehyde (MDA), glutathione (GSH), iron, and lipid peroxidation. Co-immunoprecipitation was performed to determine the interaction between Rbbp6 and Bmal1, as well as the ubiquitination level of Bmal1. The expression levels of Rbbp6, Bmal1, Yes-associated protein 1 (YAP1), ferroptosis markers, and testicular steroidogenic enzymes were tested by Western blot.
Results:
Bmal1 protein expression was significantly downregulated, while Rbbp6 was upregulated in DITD mouse model and high glucose (HG)-induced GC-1 spg cells. Overexpression of Bmal1 improved testicular injury in diabetic mice, reduced 4-hydroxynonenal (4-HNE), MDA, iron levels, and increased expression levels of GPX4, SLC7A11, GSH, as well as testicular steroidogenic enzymes. Rbbp6 decreased Bmal1 level through promoting its ubiquitination. Meanwhile, Rbbp6 knockdown inhibited the ferroptosis of HG-induced GC-1 spg cells, which were abolished by silencing Bmal1. In addition, knockdown of YAP1 or treatment with ferroptosis inducer erastin blocked the above effects caused by Bmal1 overexpression.
Conclusion
Rbbp6-mediated Bmal1 ubiquitination suppressed YAP1 pathway, promoting ferroptosis in DITD. This study highlighted Rbbp6/Bmal1/YAP1 axis as a potential therapeutic target for mitigating DITD.
6. Mechanism of levosimendan in treating hypoxic pulmonary hypertension based on network pharmacology and molecular docking technology
Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU ; Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU ; Xiao-Dan ZHANG ; Yu-Liang XIE ; Meng-Dan GAO ; Ao-Xue YUAN ; Han-Fei LI ; Tian-Tian ZHU
Chinese Pharmacological Bulletin 2024;40(3):565-573
Aim To explore the efficacy of levosimendan on hypoxia pulmonary hypertension through animal experiments, and to further explore the potential mechanism of action using network pharmacological methods and molecular docking technique. Methods The rat model of hypoxia pulmonary hypertension was constructed to detect right heart systolic pressure and right heart remodeling index. HE , Masson, and VG staining were core targets were screened out. GO and KEGG pathway enrichment analysis were performed using the DAVID database. Molecular docking of the core targets was performed with the AutoDock software. Results The results of animal experiments showed that levosimendan had obvious therapeutic effect on hypoxia pulmonary hypertension. The network pharmacology results showed that SRC, HSP90AA1, MAPK1, PIK3R1, AKT1, HRAS, MAPK14, LCK, EGFR and ESR1 used to analyze the changes of rat lung histopathology. Search the Swiss Target Prediction, DrugBank Online, BatMan, Targetnet, SEA, and PharmMapper databases were used to screen for drug targets. Disease targets were retrieved from the GeneCards, OMIM databases. The "drug-target-disease" network was constructed after identification of the two intersection targets. The protein interaction network was constructed and the were the key targets to play a therapeutic role. Molecular docking showed good docking of levosimendan with all the top five core targets with degree values. Conclusions Levosimendan may exert a therapeutic effect on hypoxia-induced pulmonary hypertension through multiple targets.
7.Drug resistance and genetic diversity of clinical strains of Helicobacter pylori in the Qiannan Prefecture and Guiyang City,and their relationships with diseases
Yuan-Yuan ZHANG ; Ke PAN ; Meng-Heng MI ; Yu-Zhu GUAN ; Qiu-Dan LU ; Juan ZHENG ; Jin ZHANG ; Tian-Shu WANG ; Qi LIU ; Zheng-Hong CHEN
Chinese Journal of Zoonoses 2024;40(1):46-55
To understand Helicobacter pylori's drug resistance,genetic diversity,and relationship with clinical diseases in the Guiyang and Qiannan minority areas of Guizhou Province,we collected samples through endoscopy,and isolated and cul-tured H.pylori.The drug resistance and genotype characteristics were determined.The differences in different regions and dis-ease types were compared,and the structural characteristics of H.pylori and mixed infections with different strains of H.py-lori in Qiannan Prefecture were analyzed.A difference in the composition ratio of EPYIA typing in the cagA variable region was observed between the two areas(P=0.012),and the composition ratio of the vacA genotype differed(P=0.000).A total of 94.6%(53/56)new sequences of H.pylori strains from two regions were obtained by MLST.The rate of infection by H.pylori mixed with different strains was 44.4%in Qiannan Pre-fecture,and no significant difference was observed in the com-position of H.pylori mixed infections among patients with dif-ferent clinical diseases(P=0.349).Differences in EPI YA typ-ing and the vacA genotype composition ratio in the cagA varia-ble region of H.pylori were observed between the Qiannan Prefecture and Guiyang City.
8.Screening and analysis of differentially expressed genes for calcium homeostasis in ameloblasts with high fluoride intervention
Ting HUANG ; Xia LIU ; Zhu WANG ; Ting CHEN ; Bin CHEN ; Guohui BAI ; Jiayuan WU ; Yuan TIAN
Chinese Journal of Tissue Engineering Research 2024;28(16):2481-2487
BACKGROUND:Fluorosis is a disorder of enamel development caused by long-term intake of large amounts of fluoride during enamel development. OBJECTIVE:To further explore the molecular mechanism of dental fluorosis formation by screening the differentially expressed genes associated with calcium homeostasis in ameloblasts by transcriptome sequencing technology. METHODS:LS8 cells were treated with 0,0.4,0.8,1.6,3.2 and 6.4 mmol/L sodium fluoride(NaF)for 24,48 and 72 hours to observe the effects of different concentrations of NaF on the morphology,cell activity and intracellular Ca2+ concentration of LS8 cells.The differentially expressed genes were screened by transcriptome sequencing and validated. RESULTS AND CONCLUSION:After 24 hours of treatment,the cells treated with 0,0.4,and 0.8 mmol/L NaF were in good growth condition,with increased cell number and clear cell outline.When the NaF concentration was≥1.6 mmol/L,the cells were gradually shrunken and became smaller and the number of cells decreased with the increase of NaF concentration.After 48 and 72 hours of treatment,the number of cells increased in the 0,0.4 mmol/L NaF groups,while gradually decreased in the 0.8,1.6,3.2 mmol/L NaF groups,with rounded and smaller cell morphology.The cells in the 6.4 mmol/L NaF group were shrunken,rounded and suspended in the medium,with almost no adherent cells.When treated with the same concentration of NaF,LS8 cells were in optimal growth after 24 hours of treatment.Results from cell counting kit-8 assay showed that when treated with the same concentration of NaF,the cell activity decreased with the increase of treatment time;when the treatment time was the same,the cell activity decreased with the increase of NaF concentration.After 24 hours of treatment,the intracellular Ca2+ concentration increased with the increase of NaF concentration.Transcriptome sequencing analysis identified genes involved in the regulation of cellular calcium homeostasis:Hsp90b1,Canx,Calr,and Hspa5 that were significantly upregulated(P<0.05)and Cacna1a that was significantly downregulated(P<0.05).To conclude,the inhibitory effect of NaF on LS8 cell proliferation may be related to the abnormal increase in intracellular Ca2+ concentration,and the mechanism may be caused by the upregulation of the expression of protein processing and synthesis pathways Hsp90b1,Canx,Calr,and Hspa5 and the downregulation of the expression of calcium signaling pathway Cacna1a.
9.A national questionnaire survey on endoscopic treatment for gastroesophageal varices in portal hypertension in China
Xing WANG ; Bing HU ; Yiling LI ; Zhijie FENG ; Yanjing GAO ; Zhining FAN ; Feng JI ; Bingrong LIU ; Jinhai WANG ; Wenhui ZHANG ; Tong DANG ; Hong XU ; Derun KONG ; Lili YUAN ; Liangbi XU ; Shengjuan HU ; Liangzhi WEN ; Ping YAO ; Yunxiao LIANG ; Xiaodong ZHOU ; Huiling XIANG ; Xiaowei LIU ; Xiaoquan HUANG ; Yinglei MIAO ; Xiaoliang ZHU ; De'an TIAN ; Feihu BAI ; Jitao SONG ; Ligang CHEN ; Yingcai MA ; Yifei HUANG ; Bin WU ; Xiaolong QI
Chinese Journal of Digestive Endoscopy 2024;41(1):43-51
Objective:To investigate the current status of endoscopic treatment for gastroesophageal varices in portal hypertension in China, and to provide supporting data and reference for the development of endoscopic treatment.Methods:In this study, initiated by the Liver Health Consortium in China (CHESS), a questionnaire was designed and distributed online to investigate the basic condition of endoscopic treatment for gastroesophageal varices in portal hypertension in 2022 in China. Questions included annual number and indication of endoscopic procedures, adherence to guideline for preventing esophagogastric variceal bleeding (EGVB), management and timing of emergent EGVB, management of gastric and isolated varices, and improvement of endoscopic treatment. Proportions of hospitals concerning therapeutic choices to all participant hospitals were calculated. Guideline adherence between secondary and tertiary hospitals were compared by using Chi-square test.Results:A total of 836 hospitals from 31 provinces (anotomous regions and municipalities) participated in the survey. According to the survey, the control of acute EGVB (49.3%, 412/836) and the prevention of recurrent bleeding (38.3%, 320/836) were major indications of endoscopic treatment. For primary [non-selective β-blocker (NSBB) or endoscopic therapies] and secondary prophylaxis (NSBB and endoscopic therapies) of EGVB, adherence to domestic guideline was 72.5% (606/836) and 39.2% (328/836), respectively. There were significant differences in the adherence between secondary and tertiary hospitals in primary prophylaxis of EGVB [71.0% (495/697) VS 79.9% (111/139), χ2=4.11, P=0.033] and secondary prophylaxis of EGVB [41.6% (290/697) VS 27.3% (38/139), χ2=9.31, P=0.002]. A total of 78.2% (654/836) hospitals preferred endoscopic therapies treating acute EGVB, and endoscopic therapy was more likely to be the first choice for treating acute EGVB in tertiary hospitals (82.6%, 576/697) than secondary hospitals [56.1% (78/139), χ2=46.33, P<0.001]. The optimal timing was usually within 12 hours (48.5%, 317/654) and 12-24 hours (36.9%, 241/654) after the bleeding. Regarding the management of gastroesophageal varices type 2 and isolated gastric varices type 1, most hospitals used cyanoacrylate injection in combination with sclerotherapy [48.2% (403/836) and 29.9% (250/836), respectively], but substantial proportions of hospitals preferred clip-assisted therapies [12.4% (104/836) and 26.4% (221/836), respectively]. Improving the skills of endoscopic doctors (84.2%, 704/836), and enhancing the precision of pre-procedure evaluation and quality of multidisciplinary team (78.9%, 660/836) were considered urgent needs in the development of endoscopic treatment. Conclusion:A variety of endoscopic treatments for gastroesophageal varices in portal hypertension are implemented nationwide. Participant hospitals are active to perform emergent endoscopy for acute EGVB, but are inadequate in following recommendations regarding primary and secondary prophylaxis of EGVB. Moreover, the selection of endoscopic procedures for gastric varices differs greatly among hospitals.
10.Hyperthyroidism Induces Ventricular Remodeling via Activating β-catenin/FoxO1 in Rat Cardiomyocytes
Xun YUAN ; Li BAN ; Songlin TIAN ; Qiulian ZHU ; Guiping ZHANG ; Yuan QIN ; Li PAN ; Ning HOU
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(3):393-411
[Objective]To explore how hyperthyroidism induces ventricular remodeling via activating β-catenin/FoxO1 in rat cardiomyocytes.[Methods]Hyperthyroidism-induced ventricular remodeling rat models were established by intraperitoneal injection of levothyroxine(T4)at 0.1 mg/kg for 30 days.β-catenin inhibitor MSAB(14 mg/kg)was admin-istrated for 30 days.We used western blot to detect the expression of myocardial hypertrophy marker ANP,β-catenin and FoxO1;immunofluorescence to examine the expression and intracellular distribution of β-catenin and FoxO1.Hyperthy-roidism-induced cardiomyocyte hypertrophy rat models were established by treatment of triiodothyronine(T3)into cul-tured primary neonatal rat cardiomyocytes for 24 hours.β-catenin siRNA(30 nmol/L)was used to down-regulate β-catenin expression in cardiomyocytes.Western blot and immunofluorescence were used to analyze the effects of β-catenin inhibition on the hyperthyroidism-induced cardiomyocyte hypertrophy.[Results]Following Wnt/β-catenin activation,β-catenin was found increased nuclear expression,to bind to the nuclear transcriptional factors and regulate the gene ex-pression.β-catenin nuclear expression was significantly increased in the hyperthyroidism-induced ventricular remodeling rats,but no change was found in the expression of typical transcriptional factor TCF7l2.Our results revealed that inhibiting β-catenin by MSAB attenuated the hyperthyroidism-induced rat ventricular remodeling.Further analysis indicated that β-catenin/FoxO1 expression was significantly increased in hyperthyroidism-induced myocardial hypertrophy which could be attenuated by suppressing β-catenin/FoxO1 in cardiomyocytes.[Conclusions]β-catenin/FoxO1 is activated in hyperthy-roidism-induced myocardial hypertrophy and β-catenin/FoxO1 inhibition attenuates hyperthyroidism-induced cardiomyo-cyte hypertrophy.

Result Analysis
Print
Save
E-mail