1.Structural basis of PKM2 regulation.
Protein & Cell 2015;6(4):238-240
Allosteric Regulation
;
Carrier Proteins
;
chemistry
;
genetics
;
metabolism
;
Cell Proliferation
;
Gene Expression
;
Glycolysis
;
genetics
;
Humans
;
Membrane Proteins
;
chemistry
;
genetics
;
metabolism
;
Mutation
;
Neoplasms
;
enzymology
;
genetics
;
pathology
;
Oxidative Phosphorylation
;
Protein Conformation
;
Protein Multimerization
;
Protein Subunits
;
chemistry
;
genetics
;
metabolism
;
Thyroid Hormones
;
chemistry
;
genetics
;
metabolism
;
Tumor Cells, Cultured
2.Structural insight into mechanisms for dynamic regulation of PKM2.
Ping WANG ; Chang SUN ; Tingting ZHU ; Yanhui XU
Protein & Cell 2015;6(4):275-287
Pyruvate kinase isoform M2 (PKM2) converts phosphoenolpyruvate (PEP) to pyruvate and plays an important role in cancer metabolism. Here, we show that post-translational modifications and a patient-derived mutation regulate pyruvate kinase activity of PKM2 through modulating the conformation of the PKM2 tetramer. We determined crystal structures of human PKM2 mutants and proposed a "seesaw" model to illustrate conformational changes between an inactive T-state and an active R-state tetramers of PKM2. Biochemical and structural analyses demonstrate that PKM2(Y105E) (phosphorylation mimic of Y105) decreases pyruvate kinase activity by inhibiting FBP (fructose 1,6-bisphosphate)-induced R-state formation, and PKM2(K305Q) (acetylation mimic of K305) abolishes the activity by hindering tetramer formation. K422R, a patient-derived mutation of PKM2, favors a stable, inactive T-state tetramer because of strong intermolecular interactions. Our study reveals the mechanism for dynamic regulation of PKM2 by post-translational modifications and a patient-derived mutation and provides a structural basis for further investigation of other modifications and mutations of PKM2 yet to be discovered.
Acetylation
;
Allosteric Regulation
;
Carrier Proteins
;
chemistry
;
genetics
;
metabolism
;
Crystallography, X-Ray
;
Fructosediphosphates
;
chemistry
;
metabolism
;
Gene Expression
;
Humans
;
Kinetics
;
Membrane Proteins
;
chemistry
;
genetics
;
metabolism
;
Models, Molecular
;
Mutation
;
Neoplasms
;
enzymology
;
genetics
;
pathology
;
Phosphorylation
;
Protein Conformation
;
Protein Multimerization
;
Protein Processing, Post-Translational
;
Protein Subunits
;
chemistry
;
genetics
;
metabolism
;
Thyroid Hormones
;
chemistry
;
genetics
;
metabolism
;
Tumor Cells, Cultured
3.The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside was mediated by p38 mitogen activated protein kinase signaling pathway in FRO thyroid cancer cells.
Won Gu KIM ; Hyun Jeung CHOI ; Tae Yong KIM ; Young Kee SHONG ; Won Bae KIM
The Korean Journal of Internal Medicine 2014;29(4):474-481
BACKGROUND/AIMS: 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that monitors intracellular AMP/adenosine triphosphate (ATP) ratios and is a key regulator of the proliferation and survival of diverse malignant cell types. In the present study, we investigated the effect of activating AMPK by 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) in thyroid cancer cells. METHODS: We used FRO thyroid cancer cells harboring the BRAF(V600E) mutation to examine the effect of AICAR on cell proliferation and cell survival. We also evaluated the involvement of mitogen-activated protein kinase (MAPK) pathways in this effect. RESULTS: We found that AICAR treatment promoted AMPK activation and suppressed cell proliferation and survival by inducing p21 accumulation and activating caspase-3. AICAR significantly induced activation of p38 MAPK, and pretreatment with SB203580, a specific inhibitor of the p38 MAPK pathway, partially but significantly rescued cell survival. Furthermore, small interfering RNA targeting AMPK-alpha1 abolished AICAR-induced activation of p38 MAPK, p21 accumulation, and activation of caspase-3. CONCLUSIONS: Our findings demonstrate that AMPK activation using AICAR inhibited cell proliferation and survival by activating p38 MAPK and proapoptotic molecules in FRO thyroid cancer cells. These results suggest that the AMPK and p38 MAPK signaling pathways may be useful therapeutic targets to treat thyroid cancer.
AMP-Activated Protein Kinases/genetics/metabolism
;
Aminoimidazole Carboxamide/*analogs & derivatives/pharmacology
;
Antineoplastic Agents/*pharmacology
;
Caspase 3/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
Cell Survival/drug effects
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism
;
Dose-Response Relationship, Drug
;
Enzyme Activation
;
Enzyme Activators/pharmacology
;
Humans
;
Mutation
;
Protein Kinase Inhibitors/pharmacology
;
Proto-Oncogene Proteins B-raf/genetics
;
RNA Interference
;
Ribonucleotides/*pharmacology
;
Signal Transduction/*drug effects
;
Thyroid Neoplasms/*enzymology/genetics/pathology
;
Time Factors
;
Transfection
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/*metabolism