1.Responsive site on the thrombospondin-1 promotor to down-regulation by phorbol 12-myristate 13-acetate in porcine aortic endothelial cells.
Experimental & Molecular Medicine 2000;32(3):135-140
Thrombospondin-1 (TSP-1), a multifunctional extracellular matrix protein, inhibits neovascularization and is implicated in the regression of tumor growth and metastasis. We found that the synthesis of TSP-1 in porcine aortic endothelial (PAE) cells was decreased in a dose-dependent manner by phorbol 12-myristate 13-acetate (PMA) treatment in porcine aortic endothelial (PAE) cells. In this study, a responsive site on the TSP-1 promotor affected by PMA treatment in PAE was characterized. The level of TSP-1 mRNA was also decreased by PMA after 1 h and persisted that way for at least 24 h. PMA treatment and c-Jun overexpression suppressed the transcription of TSP-1 promotor-luciferase reporter gene. A deletion between -767 and -657 on the TSP-1 promotor neutralized the PMA-induced down-regulation. In addition, oligo a (-767 approximately -723) was responsive to PMA-induced repression, while oligo b (-734 approximately -689) and c (-700 approximately -656) was not. Electrophoretic mobility shift assays showed that this PMA responsive element specifically bound a nuclear protein and that the binding activity was diminished by PMA treatment in PAE cells but not in Hep 3B cells. In supershift assay, potential regulatory elements in this region, SP1 and GATA-1, were not responsive to the inhibition of TSP-1 expression by PMA. Our results suggest that the repression of TSP-1 synthesis by PMA is mediated by blocking a particular unknown nuclear protein binding to the responsive site (-767 approximately -735), which is regulated by c-Jun.
Animal
;
Aorta/cytology
;
Cell Line
;
Down-Regulation (Physiology)
;
Endothelium, Vascular/drug effects*
;
Endothelium, Vascular/cytology
;
Promoter Regions (Genetics)*
;
Proto-Oncogene Proteins c-jun/metabolism
;
Response Elements*
;
Swine
;
Tetradecanoylphorbol Acetate/pharmacology*
;
Thrombospondin 1/genetics*
;
Thrombospondin 1/biosynthesis
2.Influence of ginsenoside Rg1, a panaxatriol saponin from Panax notoginseng, on renal fibrosis in rats with unilateral ureteral obstruction.
Xi-Sheng XIE ; Man YANG ; Heng-Cuang LIU ; Chuan ZUO ; Zi LI ; Yao DENG ; Jun-Ming FAN
Journal of Zhejiang University. Science. B 2008;9(11):885-894
Total saponins of Panax notoginseng (PNS) have been shown to ameliorate renal interstitial fibrosis. Ginsenoside Rg1, a panaxatriol saponin, is one of the major active molecules from PNS. The present study was undertaken to investigate the effect of ginsenoside Rg1 on renal fibrosis in rats with unilateral ureteral obstruction (UUO). The rats were randomly divided into 3 groups: sham-operation (n=15), UUO (n=15) and UUO with ginsenoside Rg1 treatment (n=15, 50 mg per kg body weight, intraperitoneally (i.p.) injected). The rats were sacrificed on Days 7 and 14 after the surgery. Histological examination demonstrated that ginsenoside Rg1 significantly inhibited interstitial fibrosis including tubular injury as well as collagen deposition. alpha-smooth muscle actin (alpha-SMA) and E-cadherin are two markers of tubular epithelial-myofibroblast transition (TEMT). Interestingly, ginsenoside Rg1 notably decreased alpha-SMA expression and simultaneously enhanced E-cadherin expression. The messenger RNA (mRNA) of transforming growth factor-beta1 (TGF-beta1), a key mediator to regulate TEMT, in the obstructed kidney increased dramatically, but was found to decrease significantly after administration of ginsenoside Rg1. Further study showed that ginsenoside Rg1 considerably decreased the levels of both active TGF-beta1 and phosphorylated Smad2 (pSmad2). Moreover, ginsenoside Rg1 substantially suppressed the expression of thrombospondin-1 (TSP-1), a cytokine which can promote the transcription of TGF-beta1 mRNA and the activation of latent TGF-beta1. These results suggest that ginsenoside Rg1 inhibits renal interstitial fibrosis in rats with UUO. The mechanism might be partly related to the blocking of TEMT via suppressing the expression of TSP-1.
Actins
;
biosynthesis
;
Animals
;
Cadherins
;
biosynthesis
;
Collagen Type I
;
genetics
;
metabolism
;
Fibronectins
;
genetics
;
metabolism
;
Ginsenosides
;
pharmacology
;
Immunohistochemistry
;
Male
;
Nephritis, Interstitial
;
drug therapy
;
genetics
;
metabolism
;
pathology
;
Panax notoginseng
;
chemistry
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Smad2 Protein
;
biosynthesis
;
Thrombospondin 1
;
biosynthesis
;
genetics
;
Transforming Growth Factor beta1
;
biosynthesis
;
genetics
;
Ureteral Obstruction
;
metabolism
;
pathology
3.Inhibition of trichostatin A-induced antiangiogenesis by small-interfering RNA for thrombospondin-1.
Jung Hoon KANG ; Soo A KIM ; Seo Yoon CHANG ; Susie HONG ; Kyong Ja HONG
Experimental & Molecular Medicine 2007;39(3):402-411
Expression of thrombospondin-1 (TSP-1), which is a known inhibitor of tumor growth and angiogenesis, is reciprocally regulated by positive regulators, such as VEGF. Additionally, trichostatin A (TSA) suppresses tumor progression by altering VEGF levels and VEGF-mediated signaling. Thus, understanding TSA-regulated TSP-1 expression and the effects of altered TSP-1 levels might provide insights into the mechanism of action of TSA in anti-tumorigenesis, and provide an approach to cancer therapy. Here, we examined the effect of TSA on TSP-1 expression, and the effects of TSA-induced TSP-1 on cell motility and angiogenesis, in HeLa and bovine aortic endothelial cells. TSA remarkably increased TSP-1 expression at the mRNA and protein levels, by controlling the TSP-1 promoter activity. Both TSA and exogenous TSP-1 reduced cell migration and capillary-like tube formation and these activities were confirmed by blocking TSP-1 with its neutralizing antibody and small-interfering RNA. Our results suggest that TSP-1 is a potent mediator of TSA-induced anti- angiogenesis.
Angiogenesis Inhibitors/*pharmacology
;
Animals
;
Cattle
;
Cell Line
;
Cell Movement/*drug effects
;
Endothelial Cells/drug effects/*physiology
;
Humans
;
Hydroxamic Acids/*pharmacology
;
Neovascularization, Pathologic/metabolism/prevention & control
;
Neovascularization, Physiologic/*drug effects
;
RNA, Messenger/biosynthesis
;
RNA, Small Interfering/*genetics
;
Thrombospondin 1/*biosynthesis/genetics/pharmacology