1.The Chikungunya virus: An emerging US pathogen
Nappe M. THOMAS ; Chuhran M. CRAIG ; Johnson A. STEVEN
World Journal of Emergency Medicine 2016;7(1):65-67
BACKGROUND:The Chikungunya (CHIK) virus was recently reported by the CDC to have spread to the United States. We report an early documented case of CHIK from the state of Pennsylvania after a patient recently returned from Haiti in June of 2014. METHODS:A 39-year-old man presented to the emergency department complaining of fever, fatigue, polyarthralgias and a diffuse rash for two days. Four days before, he returned from a mission trip to Haiti and reported that four of his accompanying friends had also become ill. A CHIK antibody titer was obtained and it was found to be positive. During his hospital stay, he responded well to supportive care, including anti-inflammatories, intravenous hydration and anti-emetics. RESULTS:His condition improved within two days and he was ultimately discharged home. CONCLUSIONS:Manifestations of CHIK can be similar to Dengue fever, which is transmitted by the same species of mosquito, and occasionally as a co-infection. Clinicians should include Chikungunya virus in their differential diagnosis of patients who present with fever, polyarthralgia and rash with a recent history of travel to endemic areas, including those within the United States.
2.Distribution of the intraosseous branch of the posterior superior alveolar artery relative to the posterior maxillary teeth
Carsen R. MCDANIEL ; Thomas M. JOHNSON ; Brian W. STANCOVEN ; Adam R. LINCICUM
Imaging Science in Dentistry 2024;54(2):121-127
Purpose:
Preoperative identification of the intraosseous posterior superior alveolar artery (PSAA) is critical when planning sinus surgery. This study was conducted to determine the distance between the cementoenamel junction and the PSAA, as well as to identify factors influencing the detection of the PSAA on cone-beam computed tomography (CBCT).
Materials and Methods:
In total, 254 CBCT scans of maxillary sinuses, acquired with 2 different scanners, were examined to identify the PSAA. The distance from the cementoenamel junction (CEJ) to the PSAA was recorded at each maxillary posterior tooth position. Binomial logistic regression and multiple linear regression were employed to evaluate the effects of scanner type, CBCT parameters, sex, and age on PSAA detection and CEJ-PSAA distance, respectively. P-values less than 0.05 were considered to indicate statistical significance.
Results:
The mean CEJ-PSAA distances at the second molar, first molar, second premolar, and first premolar positions were 17.0±4.0 mm, 21.8±4.1 mm, 19.5±4.7 mm, and 19.9±4.9 mm for scanner 1, respectively, and 17.3±3.5 mm, 16.9±4.3 mm, 18.5±4.1 mm, and 18.4±4.3 mm for scanner 2. No independent variable significantly influenced PSAA detection. However, tooth position (b = - 0.67, P<0.05) and scanner type (b = - 1.3, P<0.05) were significant predictors of CEJ-PSAA distance.
Conclusion
CBCT-based estimates of CEJ-PSAA distance were comparable to those obtained in previous studies involving cadavers, CT, and CBCT. The type of CBCT scanner may slightly influence this measurement. No independent variable significantly impacted PSAA detection.
3.Meeting Report: Translational Advances in Cancer Prevention Agent Development Meeting
Mark Steven MILLER ; Peter J. ALLEN ; Powel H. BROWN ; Andrew T. CHAN ; Margie L. CLAPPER ; Roderick H. DASHWOOD ; Shadmehr DEMEHRI ; Mary L. DISIS ; Raymond N. DUBOIS ; Robert J. GLYNN ; Thomas W. KENSLER ; Seema A. KHAN ; Bryon D. JOHNSON ; Karen T. LIBY ; Steven M. LIPKIN ; Susan R. MALLERY ; Emmanuelle J. MEUILLET ; Richard B.S. RODEN ; Robert E. SCHOEN ; Zelton D. SHARP ; Haval SHIRWAN ; Jill M. SIEGFRIED ; Chinthalapally V. RAO ; Ming YOU ; Eduardo VILAR ; Eva SZABO ; Altaf MOHAMMED
Journal of Cancer Prevention 2021;26(1):71-82
The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials. In addition, two NCI informational sessions describing contract resources for the preclinical agent development and cooperative grants for the Cancer Prevention Clinical Trials Network were also presented.
4.Meeting Report: Translational Advances in Cancer Prevention Agent Development Meeting
Mark Steven MILLER ; Peter J. ALLEN ; Powel H. BROWN ; Andrew T. CHAN ; Margie L. CLAPPER ; Roderick H. DASHWOOD ; Shadmehr DEMEHRI ; Mary L. DISIS ; Raymond N. DUBOIS ; Robert J. GLYNN ; Thomas W. KENSLER ; Seema A. KHAN ; Bryon D. JOHNSON ; Karen T. LIBY ; Steven M. LIPKIN ; Susan R. MALLERY ; Emmanuelle J. MEUILLET ; Richard B.S. RODEN ; Robert E. SCHOEN ; Zelton D. SHARP ; Haval SHIRWAN ; Jill M. SIEGFRIED ; Chinthalapally V. RAO ; Ming YOU ; Eduardo VILAR ; Eva SZABO ; Altaf MOHAMMED
Journal of Cancer Prevention 2021;26(1):71-82
The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials. In addition, two NCI informational sessions describing contract resources for the preclinical agent development and cooperative grants for the Cancer Prevention Clinical Trials Network were also presented.