1.Thiosulfate sulfurtransferase and UDP-glucuronosyltransferase activities in cholestatic rat liver induced by common bile duct ligation.
Experimental & Molecular Medicine 1997;29(4):197-201
We have investigated the effect of cholestasis on the hepatic thiosulfate sulfurtransferase (rhodanese) and UDP-glucuronosyltransferase (UDP-GT) activities in rats. Rhodanese activities in the liver cytosol, mitochondria and microsomal fractions as well as in the rat serum, and UDP-GT activity in the microsome have been investigated for a period of 42 days after common bile duct (CBD) ligation. The cytosolic rhodanese activity showed a significant decrease between the first through the 42nd day, and the mitochondrial activity showed a significant decrease between the 7th through the 42nd day after CBD ligation compared to the activities from the sham operated control, respectively. In the case of microsomal preparation, both rhodanese and UDP-GT also showed significant decrease in their activities after the ligation for the former enzyme between the 14th and the 42nd days, and for the latter enzyme between the third and 42nd days, respectively. On the other hand, the serum rhodanese activity increased markedly soon after the ligation, exhibiting the peak activity after 1 day of CBD ligation with about 4.6-fold increment. The activity subsequently decreased gradually reaching to the control level at the 42nd day post-ligation. Enzyme kinetic parameters of hepatic rhodanese and UDP-GT were analyzed using sodium thiosulfate and p-nitrophenol as substrates, respectively, with the preparations from the 28th day post-ligation. The results indicated that although the K-m values of these enzymes were about the same as the sham-operated control, the V-max values of the both enzymes decreased significantly. These results, therefore, suggest that the biosynthesis of rhodanese and UDP-GT have been reduced in response to cholestasis, and that the elevation of rhodanese activity in the serum is most likely due to leakage from the liver subsequent to CBD ligation.
Animals
;
Cholestasis
;
Common Bile Duct*
;
Cytosol
;
Hand
;
Ligation*
;
Liver*
;
Microsomes
;
Mitochondria
;
Rats*
;
Sodium
;
Thiosulfate Sulfurtransferase*
2.Effects of Intravenous Administration of Taurocholate on Liver and Serum Thiosulfate Sulfurtransferase Activities in Cholestatic Rat.
Byung Wook RHEE ; Chun Sik KWAK
Journal of the Korean Surgical Society 2004;66(5):359-366
PURPOSE: To Study the possible mechanisms of change of thiosulfate sulfurtransferase (TST) activity in cholestatic rat liver and serum. METHODS: Rats were divided into seven groups: those receiving a sham operation (Sham group), with a bile duct obstruction (BDO) alone (BDO group), with a BDO plus taurocholic acid (TCA) injection (BDO plus TCA group), with a BDO plus tauroursodeoxycholic acid (TUDCA) injection (BDO plus TUDCA group), a choledocho-caval shunt (CCS) operation (CCS groups), a CCS operation plus TCA injection (CCS plus TCA group) and a CCS operation plus TUDCA injection (CCS plus TUDCA group). The TST activities in the serum and in the hepatic subcellular fractions isolated from above experimental rats were determined. The Km and Vmax values of this hepatic enzyme were measured. RESULTS: The liver cytosolic, mitochondrial and microsomal TSTs activities, as well as the TST Vmax values were found to be significantly decreased in the BDO plus TCA and BDO groups compared to the control group. The activity and Vmax value of the liver cytosolic TST were also found to be significantly decreased in the CCS plus TCA group. Conversely, there was no variation in the Km values of the hepatic enzymes in any of the above experimental groups. The serum TST activities in the CCS plus TCA and BDO plus TCA groups, were significantly increased compared with the control, CCS and BDO groups. However, the serum and hepatic enzyme activities were unchanged in both the CCS plus TUDCA and BDO plus TUDCA groups. CONCLUSION: The above results indicate that TCA represses the biosynthesis of TST in the liver. Also, the elevated TST activity in the serum is most likely due to an increase in the permeability of hepatocytes membrane upon TCA mediated liver cell necrosis.
Administration, Intravenous*
;
Animals
;
Cholestasis
;
Cytosol
;
Hepatocytes
;
Liver*
;
Membranes
;
Necrosis
;
Permeability
;
Rats*
;
Subcellular Fractions
;
Taurocholic Acid*
;
Thiosulfate Sulfurtransferase*
3.Effects of Intravenous Administration of Taurocholate on Liver and Serum Thiosulfate Sulfurtransferase Activities in Cholestatic Rat.
Byung Wook RHEE ; Chun Sik KWAK
Journal of the Korean Surgical Society 2004;66(5):359-366
PURPOSE: To Study the possible mechanisms of change of thiosulfate sulfurtransferase (TST) activity in cholestatic rat liver and serum. METHODS: Rats were divided into seven groups: those receiving a sham operation (Sham group), with a bile duct obstruction (BDO) alone (BDO group), with a BDO plus taurocholic acid (TCA) injection (BDO plus TCA group), with a BDO plus tauroursodeoxycholic acid (TUDCA) injection (BDO plus TUDCA group), a choledocho-caval shunt (CCS) operation (CCS groups), a CCS operation plus TCA injection (CCS plus TCA group) and a CCS operation plus TUDCA injection (CCS plus TUDCA group). The TST activities in the serum and in the hepatic subcellular fractions isolated from above experimental rats were determined. The Km and Vmax values of this hepatic enzyme were measured. RESULTS: The liver cytosolic, mitochondrial and microsomal TSTs activities, as well as the TST Vmax values were found to be significantly decreased in the BDO plus TCA and BDO groups compared to the control group. The activity and Vmax value of the liver cytosolic TST were also found to be significantly decreased in the CCS plus TCA group. Conversely, there was no variation in the Km values of the hepatic enzymes in any of the above experimental groups. The serum TST activities in the CCS plus TCA and BDO plus TCA groups, were significantly increased compared with the control, CCS and BDO groups. However, the serum and hepatic enzyme activities were unchanged in both the CCS plus TUDCA and BDO plus TUDCA groups. CONCLUSION: The above results indicate that TCA represses the biosynthesis of TST in the liver. Also, the elevated TST activity in the serum is most likely due to an increase in the permeability of hepatocytes membrane upon TCA mediated liver cell necrosis.
Administration, Intravenous*
;
Animals
;
Cholestasis
;
Cytosol
;
Hepatocytes
;
Liver*
;
Membranes
;
Necrosis
;
Permeability
;
Rats*
;
Subcellular Fractions
;
Taurocholic Acid*
;
Thiosulfate Sulfurtransferase*
4.Antidotes of cyanide intoxication.
Journal of the Korean Medical Association 2013;56(12):1076-1083
Cyanide poisoning can occur from industrial disasters, smoke inhalation from fire, food, and multiple other sources. Cyanide inhibits mitochondrial oxidative phosphorylation by blocking mitochondrial cytochrome oxidase, which in turn results in anaerobic metabolism and depletion of adenosine triphosphate in cells. Rapid administration of antidote is crucial for life saving in severe cyanide poisoning. Multiple antidotes are available for cyanide poisoning. The action mechanism of cyanide antidotes include formation of methemoglobin, production of less or no toxic complex, and sulfane sulfur supplementation. At present, the available antidotes are amyl nitrite, sodium nitrite, sodium thiosulfate, hydroxocobalamin, 4-dimethylaminophenol, and dicobalt edetate. Amyl nitrite, sodium nitrite, and 4-dimethylaminophenol induce the formation of methemoglobin. Sodium thiosulfate supplies the sulfane sulfur molecule to rhodanese, allowing formation of thiocyanate and regeneration of native enzymes. Hydroxocobalamin binds cyanide rapidly and irreversibly to form cyanocobalamin. Dicobalt edetate acts as a chelator of cyanide, forming a stable complex. Based on the best evidence available, a treatment regimen of 100% oxygen and hydroxocobalamin, with or without sodium thiosulfate, is recommended for cyanide poisoning. Amyl nitrite and sodium nitrite, which induce methemoglobin, should be avoided in victims of smoke inhalation because of serious adverse effects.
Adenosine Triphosphate
;
Aminophenols
;
Amyl Nitrite
;
Antidotes*
;
Disasters
;
Edetic Acid
;
Electron Transport Complex IV
;
Equipment and Supplies
;
Fires
;
Hydroxocobalamin
;
Inhalation
;
Metabolism
;
Methemoglobin
;
Oxidative Phosphorylation
;
Oxygen
;
Poisoning
;
Polyphosphates
;
Regeneration
;
Smoke
;
Sodium
;
Sodium Nitrite
;
Sulfur
;
Thiocyanates
;
Thiosulfate Sulfurtransferase
;
Thiosulfates
;
Vitamin B 12