1.A reverse transcriptase-polymerase chain reaction method improving the specific amplification of caveolin-1 gene sequences.
Yang-yan XU ; Hui-ling YANG ; Yong YOU ; Li QIN ; Jian TU
Chinese Journal of Medical Genetics 2006;23(1):59-62
OBJECTIVETo construct a reverse transcriptase-polymerase chain reaction (RT-PCR)approach that can improve the specificity of primers while dropping down the nonspecific amplification.
METHODSIn the recent study we reported a new RT-PCR assay which improved markedly the specificity. However its efficiency of regressing nonspecific amplification remains to be accurately checked and further documented. In primer design, we looked over again some sequences that showed differences at 5' or 3' ends between human CAV1 and mouse Cav1 genes. cDNAs and the diluted plasmids which harbored the sequence of human CAV1 or mouse Cav1 gene were chosen as the templates. The ordinary PCR compared with one, of which primers modified by phosphorothioate and combined with proofreading polymerase, for their efficiencies of nonspecific amplification inhibited.
RESULTSTaq DNA polymerase without proofreading activity could efficiently catalyze the extension of primers with a single or multiple mismatched base pairs at the 3' terminus, but the kind of primer extension can be effectively blocked by phosphorothioate modified primers combined with proofreading polymerase. Compared with ordinary PCR reaction, this new PCR method can effectively regress the primer mismatched amplification of 50 ng DNA almost equaling to 2 x 10(4) unmatched template copies in a final volume of 50 microL.
CONCLUSIONCompared with the first generation of polymerases with or without proofreading activities mediating RT-PCR reaction, the introduction of nuclease-resistant 3' modified primers (3' phosphorothioate primer extension) can offer more simplicity, accuracy, and also decrease cost.
Animals ; Caveolin 1 ; genetics ; Deoxyribonucleases ; metabolism ; Gene Amplification ; Humans ; Mice ; Reverse Transcriptase Polymerase Chain Reaction ; methods ; Thionucleotides ; metabolism
2.Effect and mechanism of VEGF antisense phosphorothioate deoxynucleotides on HL-60 leukemic cells.
Journal of Experimental Hematology 2004;12(5):640-643
To explore dose-effect or time-effect of vascular endothelial growth factor (VEGF) antisense phosphorothioate oligodeoxynucleotides (AS PS-ODN) on growth of HL-60 cells, and to study the effect mechanism so as to find new role of VEGF, A7, which was the most effective one of AS PS-ODN selected with computer-aided design and experimental assay, contains 20-DNA modified with phosphorothioate and was tranferred into cells mediated with lipofectin. After culture for 72 hours, inhibitive rate of cell growth was detected with MTT methods, viable cells were counted with trypan blue exclusion each 24 hour, cell configuration and apoptosis were observed with Geimsa staining and flow cytometry respectively, level of VEGF protein was detected with VEGF ELISA kit. The results showed that A7 is able to inhibit cell growth of HL-60 in dose-depending manner of AS PS-ODN, to down-regulate VEGF protein expression significantly, and not to induce apoptosis of HL-60 cells. It is concluded that there is possibility that the inhibition effect of VEGF AS PS-ODN on HL-60 cell growth is to restrain cell proliferation without inducing apoptosis of HL-60 cell, which would interpret that endogenous VEGF proteins have a capacity of promoting proliferation of HL-60 cell.
Cell Proliferation
;
drug effects
;
Flow Cytometry
;
HL-60 Cells
;
Humans
;
Oligonucleotides, Antisense
;
pharmacology
;
Thionucleotides
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
analysis
;
physiology
3.Activation of cGMP-PKG signaling pathway contributes to neuronal hyperexcitability and hyperalgesia after in vivo prolonged compression or in vitro acute dissociation of dorsal root ganglion in rats.
Zhi-Jiang HUANG ; Hao-Chuan LI ; Su LIU ; Xue-Jun SONG
Acta Physiologica Sinica 2012;64(5):563-576
Injury or inflammation affecting sensory neurons in the dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spinal central sensitization and neuropathic pain. Recent studies have indicated that, following chronic compression of DRG (CCD) or acute dissociation of DRG (ADD) treatment, both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperalgesia are maintained by activity in cGMP-PKG signaling pathway. Here, we provide evidence supporting the idea that CCD or ADD treatment activates cGMP-PKA signaling pathway in the DRG neurons. The results showed that CCD or ADD results in increase of levels of cGMP concentration and expression of PKG-I mRNA, as well as PKG-I protein in DRG. CCD or ADD treated-DRG neurons become hyperexcitable and exhibit increased responsiveness to the activators of cGMP-PKG pathway, 8-Br-cGMP and Sp-cGMP. Hyperexcitability of the injured neurons is inhibited by cGMP-PKG pathway inhibitors, ODQ and Rp-8-pCPT-cGMPS. In vivo delivery of Rp-8-pCPT-cGMPS into the compressed ganglion within the intervertebral foramen suppresses CCD-induced thermal hyperalgesia. These findings indicate that the in vivo CCD or in vitro ADD treatment can activate the cGMP-PKG signaling pathway, and that continuing activation of cGMP-PKG pathway is required to maintain DRG neuronal hyperexcitability and/or hyperalgesia after these two dissimilar forms of injury-related stress.
Animals
;
Cyclic GMP
;
analogs & derivatives
;
metabolism
;
Cyclic GMP-Dependent Protein Kinases
;
metabolism
;
Ganglia, Spinal
;
physiopathology
;
Hyperalgesia
;
physiopathology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Thionucleotides
;
metabolism
4.Antitumor effects of mutant endostatin are enhanced by Bcl-2 antisense oligonucleotides in UM-UC-3 bladder cancer cell line.
Ming-hua REN ; Jing-song YU ; Er-lin SONG ; Cheng ZHANG ; Li MA ; Zhi-xing JIAO ; Wei-ming ZHAO ; Yu-juan SHAN ; Shao-bin NI
Chinese Medical Journal 2013;126(15):2834-2839
BACKGROUNDEndostatin is a potent inhibitor of tumor angiogenesis. In the preliminary studies, we developed a mutant endostatin containing Arg-Gly-Asp-Arg-Gly-Asp (RGDRGD) sequences. In this study, we compared the antitumor effects of mutant endostatin and Bcl-2 antisense oligonucleotides both in combination and individually.
METHODSThe artificially synthesized Bcl-2 ASODN (antisense oligonucleotides) included a translation-initiation site and was transfected into the bladder cancer cells by Lipofectamine. Cell growth was investigated by the tumor cell growth chart, MTT assay, caspase-3 activity detection assay, AO/EB fluorescein stain, and the annexin V-FITC apoptosis detection assay. In the in vivo study, UM-UC-3 bladder cancer cells were subcutaneously implanted into nude mice and the growth of tumor was examined. The ultrastructure of the tumor tissues in the treated and control groups were observed.
RESULTSThe cell growth chart showed that the cell population of the treated combination group decreased by 52.04% compared to the control group. The inhibition rate of the treated combination group was (79.66 ± 6.79)%, whereas those of the individual ASODN and ES groups were (53.39 ± 3.22)% and (50.22 ± 5.46)% respectively. In the caspase-3 activity detection using AO/EB fluorescein stain and annexin V-FITC apoptosis detection assay, the co-inhibitory effect was higher than the individual inhibitory effects (P < 0.05). There were significant differences in the inhibition of the solid tumor growth in the in vivo study.
CONCLUSIONSOur findings indicated that Bcl-2 antisense oligonucleotides enhance the antitumor effects of mutant endostatin both in vitro and in vivo. We noted the synergistic effects of Bcl-2 antisense oligonucleotides combined with mutant endostatin.
Angiogenesis Inhibitors ; administration & dosage ; Animals ; Cell Line, Tumor ; Drug Synergism ; Endostatins ; administration & dosage ; Mice ; Thionucleotides ; administration & dosage ; Urinary Bladder Neoplasms ; pathology
5.Effects of propofol on beta-adrenoceptor-mediated signal transduction in cardiac muscle; role of cAMP.
Chul Ho CHANG ; Go Un ROH ; Wyun Kon PARK
Korean Journal of Anesthesiology 2010;58(4):374-377
BACKGROUND: Propofol may decrease myocardial contractility via actions on the beta-adrenoceptor-mediated signal transduction. The aim of this study was to evaluate the effect of propofol via beta-adrenoceptor-mediated signal transduction by measuring the tissue levels of cAMP (cyclic adenosine monophosphate). METHODS: The effects of propofol on beta-adrenoceptor mediated cascades were measured with cAMP concentrations, which were stimulated by agonists (l-isoproterenol, GTPgammaS, and forskolin) of each step of beta-adrenoceptor-mediated cascades. RESULTS: While the production of cAMP stimulated by isoproterenol, GTPgammaS, or forskolin are increased (P < 0.05), application of each concentration of propofol (0.1, 1, 10, 100 micrometer) did not alter the levels of cAMP. CONCLUSIONS: Considering that propofol did not alter the tissue cAMP levels when stimulated by isoproterenol, GTPgammaS, and forskolin, propofol appears to have no effect on the beta-adrenoceptor signaling pathway in guinea pig ventricular myocardium.
Adenosine
;
Animals
;
Forskolin
;
GTP-Binding Proteins
;
Guanosine 5'-O-(3-Thiotriphosphate)
;
Guinea Pigs
;
Isoproterenol
;
Myocardium
;
Propofol
;
Signal Transduction
6.Dynorphin A (1-17) was Selective tomicro-Opioid Receptor in Agonist-Stimulated 35S GTPgammaS Binding in Cortical and Thalamic Membranes of Monkey.
Heeseung LEE ; Sung Ae LEE ; Sin Young KANG ; Dong Yeon KIM ; Chi Hyo KIM
Korean Journal of Anesthesiology 2005;48(4):412-416
BACKGROUND: Dynorphin A (1-17) is conceived as an endogenous opioid peptide with a high degree of selectivity forkappa- opioid receptor even though it has been reported to sometimes act like amicro- opioid agonist. The aim of this study was to investigate [35S] GTPgammaS binding stimulated activation by dynorphin A (1-17) in the cerebral and thalamic membranes of a rhesus monkey. METHODS: The rhesus monkey (Macaca mulatta, male, n = 1) was euthanized for the preparation of the cerebral and thalamic membranes. Protein concentrations were determined by the Bradford method. In the dynorphin A (1-17)-stimulated [35S] GTPgammaS binding dose-response curve, EC50 (effective concentration 50 nM) and maximum stimulation (% over basal) were determined in the absence or presence of themicro-andkappa-opioid receptor antagonists naloxone (20 nM) and norbinaltorphimine (nor-BNI, 3 nM), respectively. E2078-stimulated [35S] GTPgammaS binding was also determined in the absence or presence ofmicro-andkappa-opioid receptor antagonists in the cortical membrane and compared with dynorphin A (1-17). RESULTS: Values of EC50 and maximum stimulation of dynorphin A (1-17)-stimulated [35S] GTPgammaS binding were as follows: cortex (474 nM/32.0%) and thalamus (423 nM/45.3%). Nor-BNI (3 nM) did not antagonize dynorphin A (1-17)-stimulated [35S] GTPgammaS binding at all in cortical or thalamic membrane, but naloxone (20 nM) produced a 12.2 fold rightward shift of the dynorphin A (1-17)-stimulated [35S] GTPgammaS binding dose-response curve in the thalamic membrane. The EC50 and the maximum stimulation of E2078-stimulated [35S] GTPgammaS binding were 65.6 nM and 22.7%, respectively. In E2078-stimulated [35S] GTPgammaS binding, the dose-response curve was antagonized not by nor-BNI but by naloxone but in the cortical membrane (a 14.2 times rightward shift). CONCLUSIONS: Dynorphin A (1-17) is selective formicro-opioid receptor in agonist-stimulated [35S] GTPgammaS binding in the cortical and thalamic membranes of rhesus monkey.
Dynorphins*
;
Guanosine 5'-O-(3-Thiotriphosphate)*
;
Haplorhini*
;
Humans
;
Macaca mulatta
;
Male
;
Membranes*
;
Naloxone
;
Opioid Peptides
;
Receptors, Opioid
;
Thalamus
7.Investigation of Orphanin FQ-stimulated 35SGTPgammaS Binding in the Whole Brain of Mice: Does Orphanin FQ Have Anti-opioid Effect in the Level of Receptor-ligand Interaction and 35SGTPgammaS Activation?.
Korean Journal of Anesthesiology 2007;53(1):91-96
BACKGROUND: This study was examined whether or not the orphanin FQ (OFQ)-stimulated [35S]GTPgammaS activity interact with DAMGO in the whole brain of mice. METHODS: ICR mice (male, n = 20, 20-25 g) were euthanized for the membrane preparations. In the agonist-stimulated [35S]GTPgammaS binding dose-response curves by OFQ, Ro-64-6198 and DAMGO, the EC50 (effective concentration 50, nM) and maximum stimulation (% over basal) were determined in the presence or absence of J-113397 (10 nM), a NOP (nociceptin-opioid peptide) receptor antagonist. OFQ (1micrometer), Ro-64-6198 (10micrometer), DAMGO (10micrometer) and their combination cocktail were used to determine the interaction between the NOP and MOP (micron-opioid peptide) receptor. RESULTS: The values of EC50 and maximum stimulation of [35S]GTPgammaS binding were as follows: OFQ (9.2 +/- 0.2 nM/17.9 +/- 0.1%), Ro-64-6198 (143.5 +/- 0.5 nM/18.1 +/- 0.4%), and DAMGO (680.6 +/- 0.7 nM/18.1 +/- 0.5%). J-113397 produced a 8.7 and 7.1 fold rightward shifting in the OFQ and Ro-64-6198-stimulated [35S]GTPgammaS binding dose-response curve respectively, but not in the DAMGO. OFQ combined with DAMGO-stimulated [35S]GTPgammaS binding had an additive effect, but not in the OFQ combined with Ro-64-6198. CONCLUSIONS: OFQ, Ro-64-6198 and DAMGO-stimulated [35S]GTPgammaS binding in the brain of mice has receptor selectivity. The [35S]GTPgammaS stimulation of OFQ and DAMGO had an additive effect rather than an anti-opioid effect on the level of intracellular signal transduction through agonist-stimulated [35S]GTPgammaS bindings.
Animals
;
Brain*
;
Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
;
Guanosine 5'-O-(3-Thiotriphosphate)
;
Membranes
;
Mice*
;
Mice, Inbred ICR
;
Signal Transduction
8.Effects of purinergic analogues on spontaneous contraction and electrical activities of gastric antral circular muscle in guinea-pig.
Zheng JIN ; Hui-Shu GUO ; Dong-Yuan XU ; Ming-Yu HONG ; Xiang-Lan LI ; Wen-Xie XU
Acta Physiologica Sinica 2004;56(6):678-684
In order to investigate the role of non-adrenergic non-cholinergic nerves in regulating mechanical and electrical activity of gastric circular smooth muscle, the effects of ATP and its analogues on gastric motility and electrical activities were observed in guinea-pig. In organ bath system, isometric force of the circular smooth muscle of guinea-pig gastric antrum was measured. Electrical activity of the muscle was recorded by using intracellular microelectrode. Electrical and mechanical activities were recorded by chart recorder. ATP and 2-MeSATP potentiated the mechanical activity but did not affect electrical activity in gastric circular smooth muscle. ATP and 2-MeSATP-induced contraction was effectively blocked by nonselective P2y-purinoceptor antagonist, reactive-blue-2 and suramin, but ATP-induced contraction was not blocked by alpha,beta-MeATP-induced desensitization of P2x-purinoceptors. However, alpha,beta-MeATP, P2x-purinoceptor agonist, attenuated slow waves with membrane hyperpolarization and inhibited contraction. The relaxation by beta,gamma-MeATP was blocked by alpha,beta-MeATP-induced desensitization of P2x-purinoceptors. ATP-induced contraction was blocked by external calcium-free, but not by nicardipine, a L-type calcium channel blocker. Indomethacin, a nonselective cyclooxygenase inhibitor, did not block ATP-induced contraction. The results suggest that: (1) ATP- and analogues-induced contraction is mediated by P2y-purinoceptor, whereas alpha,beta-MeATP-induced relaxation by P2x-purinoceptor in guinea-pig gastric antral circular smooth muscle. (2) ATP-induced contraction is dependent on extracellular calcium, but Ca2+ entry is not mediated by L-type calcium channel. (3) Prostaglandins are not involved in ATP- and analogue-induced contraction of gastric circular smooth muscle in guinea-pigs, and alpha,beta-MeATP-induced relaxation is related to membrane hyperpolarization.
Adenosine Triphosphate
;
analogs & derivatives
;
pharmacology
;
Animals
;
Electrophysiology
;
Guinea Pigs
;
In Vitro Techniques
;
Microelectrodes
;
Muscle Contraction
;
drug effects
;
physiology
;
Muscle, Smooth
;
drug effects
;
physiology
;
Purinergic Agonists
;
Pyloric Antrum
;
drug effects
;
physiology
;
Thionucleotides
;
pharmacology
9.Inhibition of telomerase with human telomerase reverse transcriptase antisense enhances tumor necrosis factor-alpha-induced apoptosis in bladder cancer cells.
Chinese Medical Journal 2007;120(9):755-760
BACKGROUNDTelomerase activity is found in 85%-90% of all human cancers but not in their adjacent normal cells. Human telomerase reverse transcriptase (hTERT) is an essential component in the telomerase complex that plays an important role in telomerase activity. This study investigated the effect of the telomerase inhibition with an hTERT antisense oligodeoxynucleotide (ODN) in bladder cancer cells (T24) on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis.
METHODSAntisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and purified. Telomerase activity was measured by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). hTERT mRNA expression was measured by reverse transcription polymerase chain reaction (RT-PCR) assay and a gel-image system. hTERT protein was detected by immunochemistry and flow cytometry. Cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium (MTT) assay. Cell apoptosis was observed by a morphological method and determined by flow cytometry.
RESULTSAS PS-ODN significantly inhibited telomerase activity and decreased the levels of hTERT mRNA which preceded the decline in the telomerase activity. AS PS-ODN significantly reduced the percentage of positive cells expressing hTERT protein following the decline of hTERT mRNA levels. There was no difference seen in the telomerase activity, hTERT mRNA expression or the protein levels between the sense phosphorothioate oligodeoxynucleotide (SPS-ODN) and the control group. AS PS-ODN treatment significantly decreased the cell viability and enhanced the apoptotic rate of T24 cells in response to TNF-alpha while there was no difference in cell viability and apoptotic rate between the S PS-ODN and the control group.
CONCLUSIONSAS PS-ODN can significantly inhibit telomerase activity by downregulating the hTERT mRNA and protein expression. Treatment with AS PS-ODN may be a potential and most promising strategy for bladder cancer with telomerase activity.
Apoptosis ; Cell Line, Tumor ; Flow Cytometry ; Humans ; Oligonucleotides, Antisense ; therapeutic use ; RNA, Messenger ; analysis ; Telomerase ; analysis ; antagonists & inhibitors ; genetics ; Thionucleotides ; therapeutic use ; Tumor Necrosis Factor-alpha ; physiology ; Urinary Bladder Neoplasms ; enzymology ; pathology ; therapy
10.In vivo inhibition of hepatitis B virus replication and gene expression by targeted phosphorothioate modified antisense oligodeoxynucleotides.
Sen ZHONG ; Su Jun ZHENG ; Feng CHEN ; Shou Ming WEN ; Sheng Qi WANG ; Jian Jun ZHANG ; Chun Liang DENG
Chinese Journal of Hepatology 2002;10(4):283-286
OBJECTIVETo investigate the antiviral effect of targeted antisense oligodeoxynucleotides (asODN) in HBV transgenic mice.
METHODSasODN phosphorothioated (5'-CATGCCCCAAAGCCAC-3') targeted to HBV pre-C/C region was synthesized. Gal15-PLL was used as drugs carrier which targeted asODN to mice liver. Twelve mice with positive serum HBsAg, HBV-DNA were divided into the Gal15-PLL-asODN-treated group or the control group randomly. In Gal15-PLL- asODN-treated group, each mouse was injected i.v. asODN 15mug/g weighty/day via tail vein for 12 days successively; while in the control group, each mouse received the same volume normal saline by the same way.
RESULTSIn the Gal15-PLL- asODN-treated group, serum HBsAg decreased at the 6th day (P<0.05), and decreased significantly at the 12th day vs pretreatment (P<0.01). The serum HBV DNA of 4/6 mice became negative. Immunohistochemistry test showed lowered HBsAg, HBcAg content in the liver. In contrast, the control group showed no apparent changes.
CONCLUSIONSGal15-PLL-asODN targeted to pre-C/C region could inhibit HBV replication and gene expression.
Animals ; DNA, Viral ; blood ; Gene Expression ; drug effects ; Hepatitis B Surface Antigens ; blood ; Hepatitis B virus ; drug effects ; genetics ; physiology ; Mice ; Mice, Transgenic ; Oligodeoxyribonucleotides, Antisense ; pharmacology ; Thionucleotides ; pharmacology ; Virus Replication ; drug effects