1.The Effects of Antihypertensive Drugs on Bone Mineral Density in Ovariectomized Mice.
Kwi Young KANG ; Yoongoo KANG ; Mirinae KIM ; Youngkyun KIM ; Hyoju YI ; Juryun KIM ; Hae Rin JUNG ; Sung Hwan PARK ; Ho Youn KIM ; Ji Hyeon JU ; Yeon Sik HONG
Journal of Korean Medical Science 2013;28(8):1139-1144
The effects of several antihypertensive drugs on bone mineral density (BMD) and micro-architectural changes in ovariectomized (OVX) mice were investigated. Eight-week-old female C57/BL6 mice were used for this study. Three days after ovariectomy, mice were treated intraperitoneally with nifedipine (15 mg/kg), telmisartan (5 mg/kg), enalapril (20 mg/kg), propranolol (1 mg/kg) or hydrochlorothiazide (12.5 mg/kg) for 35 consecutive days. Uterine atrophy of all mice was confirmed to evaluate estrogen deficiency state. BMD and micro-architectural analyses were performed on tibial proximal ends by micro-computed tomography (micro-CT). When OVX mice with uterine atrophy were compared with mice without atrophy, BMD decreased (P < 0.001). There were significant differences in BMD loss between different antihypertensive drugs (P = 0.005). Enalapril and propranolol increased BMD loss in mice with atrophied uteri compared with control mice. By contrast, thiazide increased BMD in mice with uterine atrophy compared with vehicle-treated mice (P = 0.048). Thiazide (P = 0.032) and telmisartan (P = 0.051) reduced bone loss and bone fraction in mice with uterine atrophy compared with the control. Thiazide affects BMD in OVX mice positively. The reduction in bone loss by thiazide and telmisartan suggest that these drugs may benefit menopausal women with hypertension and osteoporosis.
Animals
;
Antihypertensive Agents/*pharmacology
;
Atrophy
;
Benzimidazoles/pharmacology
;
Benzoates/pharmacology
;
Bone Density/*drug effects
;
Enalapril/pharmacology
;
Female
;
Mice
;
Mice, Inbred C57BL
;
Ovariectomy
;
Propranolol/pharmacology
;
Thiazides/pharmacology
;
Tibia/radiography
;
Tomography, X-Ray Computed
;
Uterus/anatomy & histology/pathology
2.The Effects of Antihypertensive Drugs on Bone Mineral Density in Ovariectomized Mice.
Kwi Young KANG ; Yoongoo KANG ; Mirinae KIM ; Youngkyun KIM ; Hyoju YI ; Juryun KIM ; Hae Rin JUNG ; Sung Hwan PARK ; Ho Youn KIM ; Ji Hyeon JU ; Yeon Sik HONG
Journal of Korean Medical Science 2013;28(8):1139-1144
The effects of several antihypertensive drugs on bone mineral density (BMD) and micro-architectural changes in ovariectomized (OVX) mice were investigated. Eight-week-old female C57/BL6 mice were used for this study. Three days after ovariectomy, mice were treated intraperitoneally with nifedipine (15 mg/kg), telmisartan (5 mg/kg), enalapril (20 mg/kg), propranolol (1 mg/kg) or hydrochlorothiazide (12.5 mg/kg) for 35 consecutive days. Uterine atrophy of all mice was confirmed to evaluate estrogen deficiency state. BMD and micro-architectural analyses were performed on tibial proximal ends by micro-computed tomography (micro-CT). When OVX mice with uterine atrophy were compared with mice without atrophy, BMD decreased (P < 0.001). There were significant differences in BMD loss between different antihypertensive drugs (P = 0.005). Enalapril and propranolol increased BMD loss in mice with atrophied uteri compared with control mice. By contrast, thiazide increased BMD in mice with uterine atrophy compared with vehicle-treated mice (P = 0.048). Thiazide (P = 0.032) and telmisartan (P = 0.051) reduced bone loss and bone fraction in mice with uterine atrophy compared with the control. Thiazide affects BMD in OVX mice positively. The reduction in bone loss by thiazide and telmisartan suggest that these drugs may benefit menopausal women with hypertension and osteoporosis.
Animals
;
Antihypertensive Agents/*pharmacology
;
Atrophy
;
Benzimidazoles/pharmacology
;
Benzoates/pharmacology
;
Bone Density/*drug effects
;
Enalapril/pharmacology
;
Female
;
Mice
;
Mice, Inbred C57BL
;
Ovariectomy
;
Propranolol/pharmacology
;
Thiazides/pharmacology
;
Tibia/radiography
;
Tomography, X-Ray Computed
;
Uterus/anatomy & histology/pathology
3.Effects of Thiazide on the Expression of TRPV5, Calbindin-D28K, and Sodium Transporters in Hypercalciuric Rats.
Hye Ryoun JANG ; Sejoong KIM ; Nam Ju HEO ; Jeong Hwan LEE ; Hyo Sang KIM ; Soren NIELSEN ; Un Sil JEON ; Yun Kyu OH ; Ki Young NA ; Kwon Wook JOO ; Jin Suk HAN
Journal of Korean Medical Science 2009;24(Suppl 1):S161-S169
TRPV5 is believed to play an important role in the regulation of urinary calcium excretion. We assessed the effects of hydrochlorothiazide (HCTZ) on the expression of TRPV5, calbindin-D28K, and several sodium transporters in hypercalciuric rats. Sprague- Dawley rats were divided into 4 groups; control, HCTZ, high salt, and high salt with HCTZ group in experiment 1; control, HCTZ, high calcium (Ca), and high Ca with HCTZ group in experiment 2. To quantitate the expression of TRPV5, calbindin- D28K, and sodium transporters, western blotting was performed. In both experiments, HCTZ significantly decreased urinary calcium excretion. TRPV5 protein abundance decreased in all hypercalciuric rats, and restored by HCTZ in both high salt with HCTZ and high Ca with HCTZ group. Calbindin-D28K protein abundance increased in the high salt and high salt with HCTZ groups, but did not differ among groups in experiment 2. Protein abundance of NHE3 and NKCC2 decreased in all hypercalciuric rats, and were restored by HCTZ in only high Ca-induced hypercalciuric rats. In summary, protein abundance of TRPV5, NHE3, and NKCC2 decreased in all hypercalciuric rats. The hypocalciuric effect of HCTZ is associated with increased protein abundance of TRPV5 in high salt or calcium diet-induced hypercalciuric rats.
Animals
;
Biological Transport
;
Calcium/urine
;
Calcium Channels/chemistry
;
Calcium-Binding Protein, Vitamin D-Dependent/*biosynthesis
;
Hydrochlorothiazide/pharmacology
;
Hypercalciuria/*therapy
;
Male
;
Models, Biological
;
Rats
;
Rats, Sprague-Dawley
;
Sodium/*metabolism
;
Sodium-Hydrogen Antiporter/chemistry
;
Sodium-Potassium-Chloride Symporters/metabolism
;
TRPV Cation Channels/*biosynthesis/chemistry
;
Thiazides/*pharmacology