1.Socioeconomic inequality in health-related quality of life among Korean adults with chronic disease: an analysis of the Korean Community Health Survey
Thi Huyen Trang NGUYEN ; Thi Tra BUI ; Jinhee LEE ; Kui Son CHOI ; Hyunsoon CHO ; Jin-Kyoung OH
Epidemiology and Health 2024;46(1):e2024018-
OBJECTIVES:
Health-related quality of life is crucial for people dealing with chronic illness. This study investigated the quality of life in individuals with 5 common chronic conditions in Korea. We also analyzed socioeconomic factors such as education, income, occupation, and urbanization to identify determinants of inequality.
METHODS:
Using 2016 Korea Community Health Survey data, we examined individuals aged 30 or older with chronic diseases (diabetes, hypertension, cardiovascular disease, hyperlipidemia, arthritis) using the EuroQol 5-Dimension 3 Level tool. We analyzed the associations between socioeconomic factors (education, income, occupation, urbanization) and quality of life using descriptive statistics and regression analysis. Inequality indices (relative inequality index, absolute inequality index) were used to measure inequality in quality of life.
RESULTS:
Individuals with higher income levels showed a 1.95-fold higher likelihood of a better quality of life than those with the lowest income. The lowest income group had higher odds of mobility (adjusted odds ratio [aOR], 2.2), self-care (aOR, 2.1), activity limitations (aOR, 2.4), pain/discomfort (aOR, 1.8), and anxiety/depression (aOR, 2.3). Educational disparities included a 3-fold increase in mobility and daily activity problems for those with elementary or lower education. Well-educated participants had a 1.94 times higher quality of life, with smaller differences in anxiety/depression and self-management. The income gap accounted for 14.1% of variance in quality-of-life disparities.
CONCLUSIONS
Addressing socioeconomic disparities in the quality of life for individuals with chronic diseases necessitates tailored interventions and targeted health policies. This research informs policymakers in developing focused initiatives to alleviate health inequities. It emphasizes the importance of mental health support and ensuring affordable, accessible healthcare services.
2.Determinants of unhealthy living by gender, age group, and chronic health conditions across districts in Korea using the 2010-2017 Community Health Surveys
Thi Tra BUI ; Thi Huyen Trang NGUYEN ; Jinhee LEE ; Sun Young KIM ; Jin-Kyoung OH
Epidemiology and Health 2024;46(1):e2024014-
OBJECTIVES:
We investigated the prevalence and determinants of unhealthy living by gender, age, and comorbidities across Korean districts.
METHODS:
For 806,246 men and 923,260 women from 245 districts who participated in the 2010-2017 Korean Community Health Surveys, risk scores were calculated based on obesity, physical inactivity, smoking, and high-risk alcohol consumption, each scored from 0 (lowest risk) to 2 (highest risk). A risk score ≥4 was defined as indicating unhealthy living, and weighted proportions were calculated for each district. Using multivariate regression, an ecological model including community socioeconomic, interpersonal, and neighborhood factors was examined by gender, age, and comorbidities.
RESULTS:
The mean age-standardized rate of unhealthy living was 24.05% for men and 4.91% for women (coefficients of variation, 13.94% and 29.51%, respectively). Individuals with chronic diseases more frequently exhibited unhealthy lifestyles. Unhealthy lifestyles were associated with educational attainment (β-coefficients: men, -0.21; women, -0.15), high household income (β=0.08 and 0.03, respectively), pub density (β=0.52 and 0.22, respectively), and fast-food outlet density (β=2.81 and 1.63, respectively). Negative associations were observed with manual labor, social activity participation, and hospital bed density. Unhealthy living was positively associated with living alone among women and with being unemployed among middle-aged men. Access to parks was negatively associated with unhealthy living among young men and women. The ecological model explained 32% of regional variation in men and 41% in women.
CONCLUSIONS
Improving the neighborhood built and socioeconomic environment may reduce regional disparities in lifestyle behaviors; however, the impacts may vary according to socio-demographic traits and comorbidities.