1.Development of metabolic models with multiple constraints: a review.
Xue YANG ; Peiji ZHANG ; Zhitao MAO ; Xin ZHAO ; Ruoyu WANG ; Jingyi CAI ; Zhiwen WANG ; Hongwu MA
Chinese Journal of Biotechnology 2022;38(2):531-545
Constraint-based genome-scale metabolic network models (genome-scale metabolic models, GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric constraints, other constraints such as enzyme availability and thermodynamic feasibility may also limit the cellular phenotype solution space. Recently, extended GEM models considering either enzymatic or thermodynamic constraints have been developed to improve model prediction accuracy. This review summarizes the recent progresses on metabolic models with multiple constraints (MCGEMs). We presented the construction methods and various applications of MCGEMs including the simulation of gene knockout, prediction of biologically feasible pathways and identification of bottleneck steps. By integrating multiple constraints in a consistent modeling framework, MCGEMs can predict the metabolic bottlenecks and key controlling and modification targets for pathway optimization more precisely, and thus may provide more reliable design results to guide metabolic engineering of industrially important microorganisms.
Genome
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
;
Models, Biological
;
Thermodynamics
2.In Silico Screening of Potential Chinese Herbal Medicine Against COVID-19 by Targeting SARS-CoV-2 3CLpro and Angiotensin Converting Enzyme II Using Molecular Docking.
Liang-Qin GAO ; Jing XU ; Shao-Dong CHEN
Chinese journal of integrative medicine 2020;26(7):527-532
OBJECTIVE:
To seek potential Chinese herbal medicine (CHM) for the treatment of coronavirus disease 2019 (COVID-19) through the molecular docking of the medicine with SARS-CoV-2 3CL hydrolytic enzyme and the angiotensin converting enzyme II(ACE2) as receptors, using computer virtual screening technique, so as to provide a basis for combination forecasting.
METHODS:
The molecular docking of CHM with the SARS-Cov-2 3CL hydrolase and the ACE2 converting enzyme, which were taken as the targets, was achieved by the Autodock Vina software. The CHM monomers acting on 3CLpro and ACE2 receptors were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the active ingredients were selected, and the key CHMs and compounds were speculated. Based on the perspective of network pharmacology, the chemical-target network was constructed, and the functional enrichment analysis of gene ontology and the pathway enrichment analysis of Kyoto encyclopedia of genes and genomes were carried out by DAVID to speculate about the mechanism of action of the core drug pairs.
RESULTS:
There are 6 small molecule compounds that have the optimal binding energy with the two target proteins. Among 238 potential anti-COVID-19 herbs screened in total, 16 kinds of CHM containing the most active ingredients, and 5 candidate anti-COVID-19 herbs that had been used in high frequency, as well as a core drug pair, namely, Forsythiae Fructus-Lonicerae Japonicae Flos were selected.
CONCLUSION
The core drug pair of Forsythiae Fructus-Lonicerae Japonicae Flos containing multiple components and targets is easy to combine with 3CLpro and ACE2, and exerts an anti-COVID-19 pneumonia effect through multi-component and multi-target, and plays the role of anti-COVID-19 pneumonia in multi-pathway.
Betacoronavirus
;
metabolism
;
Computer Simulation
;
Coronavirus Infections
;
drug therapy
;
Drugs, Chinese Herbal
;
therapeutic use
;
Gene Ontology
;
Humans
;
Molecular Docking Simulation
;
Pandemics
;
Peptidyl-Dipeptidase A
;
metabolism
;
Pneumonia, Viral
;
drug therapy
;
Thermodynamics
3.Progress and application of metabolic network model based on enzyme constraints.
Xin ZHAO ; Xue YANG ; Zhitao MAO ; Hongwu MA
Chinese Journal of Biotechnology 2019;35(10):1914-1924
Genome-scale metabolic network models have been successfully applied to guide metabolic engineering. However, the conventional flux balance analysis only considers stoichiometry and reaction direction constraints, and the simulation results cannot accurately describe certain phenomena such as overflow metabolism and diauxie growth on two substrates. Recently, researchers proposed new constraint-based methods to simulate the cellular behavior under different conditions more precisely by introducing new constraints such as limited enzyme content and thermodynamics feasibility. Here we review several enzyme-constrained models, giving a comprehensive introduction on the biological basis and mathematical representation for the enzyme constraint, the optimization function, the impact on the calculated flux distribution and their application in identification of metabolic engineering targets. The main problems in these existing methods and the perspectives on this emerging research field are also discussed. By introducing new constraints, metabolic network models can simulate and predict cellular behavior under various environmental and genetic perturbations more accurately, and thus can provide more reliable guidance to strain engineering.
Enzymes
;
metabolism
;
Genome
;
genetics
;
Metabolic Engineering
;
Metabolic Networks and Pathways
;
genetics
;
Models, Biological
;
Thermodynamics
4.Study on interaction between ginsenosides Rg_1,Rb_1 and Ro and bovine serum albumin.
Tian ZUO ; Yue-Yang SUN ; Wen-Lai XUE ; Ying ZHANG ; Guang WANG ; Xiao-Hai ZHANG ; Ran XU ; Shao-Peng ZHANG
China Journal of Chinese Materia Medica 2019;44(12):2559-2565
Small molecules with physiological or pharmacological activities need to interact with biological macromolecules in order to function in the body. As the protein with the highest proportion of plasma protein,serum albumin is the main protein binding to various endogenous or exogenous small molecules. Serum albumin interacts with small molecules in a reversible non-covalent manner and transports small molecules to target sites. Bovine serum albumin( BSA) is an ideal target protein for drug research because of its low cost and high homology with human serum albumin. The research on the interaction between drugs and BSA has become a hotspot in the fields of pharmacy,medicine,biology and chemistry. In this research,molecular docking method was used to study the interaction between three small ginsenosides with high pharmacological value( Rg_1,Rb_1,Ro) and bovine serum albumin( BSA),and the binding mode information of three ginsenosides interacting with BSA was obtained. The results of molecular docking showed that ginsenosides and amino acid residues in the active pocket of proteins could be combined by hydrophobic action,hydrogen bonding and electrostatic action. The interaction between small ginsenosides and bovine serum albumin is not the only form,and their interaction has many forms of force. The interaction between these molecules and various weak forces is the key factor for the stability of the complex. The results of this study can provide the structural information of computer simulation for the determination of the interaction patterns between active components and proteins of ginseng.
Animals
;
Binding Sites
;
Cattle
;
Computer Simulation
;
Ginsenosides
;
chemistry
;
Molecular Docking Simulation
;
Protein Binding
;
Serum Albumin, Bovine
;
chemistry
;
Spectrometry, Fluorescence
;
Thermodynamics
6.The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection.
Xuyuan ZHANG ; Pan YANG ; Nan WANG ; Jialong ZHANG ; Jingyun LI ; Hao GUO ; Xiangyun YIN ; Zihe RAO ; Xiangxi WANG ; Liguo ZHANG
Protein & Cell 2017;8(8):590-600
Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.
Amino Acid Sequence
;
Animals
;
Antibodies, Monoclonal
;
chemistry
;
genetics
;
metabolism
;
Binding Sites
;
Cell Line
;
Crystallography, X-Ray
;
Enterovirus A, Human
;
drug effects
;
genetics
;
growth & development
;
immunology
;
Fibroblasts
;
drug effects
;
virology
;
Gene Expression
;
HEK293 Cells
;
Humans
;
Immunoglobulin Fab Fragments
;
chemistry
;
genetics
;
metabolism
;
Lysosome-Associated Membrane Glycoproteins
;
chemistry
;
genetics
;
immunology
;
Mice
;
Models, Molecular
;
Protein Binding
;
Protein Conformation, alpha-Helical
;
Protein Conformation, beta-Strand
;
Protein Interaction Domains and Motifs
;
Receptors, Scavenger
;
chemistry
;
genetics
;
immunology
;
Receptors, Virus
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Sequence Alignment
;
Sequence Homology, Amino Acid
;
Sf9 Cells
;
Spodoptera
;
Thermodynamics
7.Effects and Prognostic Factors of Automated Thermodynamic System Treatment for Meibomian Gland Dysfunction.
Seung Wan NAM ; Dong Hui LIM ; Joo HYUN ; Tae Young CHUNG
Journal of the Korean Ophthalmological Society 2016;57(5):724-733
PURPOSE: To evaluate the effect and prognostic factors of automated thermodynamic treatment (thermal compression therapy device [KCL 1100®]) for Meibomian gland dysfunction (MGD). METHODS: Patients (48 eyes of 24 subjects) with MGD were recruited for a prospective clinical trial. Patients received 15-minute treatments twice a day using the KCL 1100®. Severity of dry eye symptoms were evaluated using the Standard Patient Evaluation for Eye Dryness (SPEED) and Ocular Surface Disease Index (OSDI), and severity of Meibomian gland function was evaluated using the Meibomian gland expressibility (MGE), Meibomian gland secretion (MGS) score and lipid layer thickness measured by LipiView®. To evaluate ocular surface, we measured tear break-up time (BUT) and fluorescein corneal staining score (Oxford scale). Data were presented for baseline and at 2 weeks and 1 month post-treatment. RESULTS: Dry eye symptom (SPEED, OSDI), Meibomian gland function (MGE, MGS), and ocular surface index (BUT, Oxford scale) of patients were significantly improved from baseline to 2 weeks (p < 0.05) and 1 month post-treatment (p < 0.05). In addition, patients with more severe dry eye symptom and Meibomian gland index at baseline examination achieved improvement in mild to moderate MGD (p < 0.05). Improvement of Meibomian gland function (MGE) was associated with improvement of ocular surface index (BUT, Oxford scale) (p < 0.05), but not with improvement of dry eye symptom (SPEED, OSDI) (p > 0.05). There were no significant adverse events during the treatment. CONCLUSIONS: KCL 1100® automated thermodynamic treatment is an effective and safe treatment for MGD. Additionally, KCL 1100® is more effective in patients with moderate dry eye symptom and MGD.
Fluorescein
;
Humans
;
Meibomian Glands*
;
Prospective Studies
;
Tears
;
Thermodynamics*
8.Thermodynamics of ABC transporters.
Xuejun C ZHANG ; Lei HAN ; Yan ZHAO
Protein & Cell 2016;7(1):17-27
ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion. We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.
ATP-Binding Cassette Transporters
;
physiology
;
Adenosine Triphosphate
;
metabolism
;
Animals
;
Humans
;
Models, Theoretical
;
Thermodynamics
9.Compatibility research of Yiqi Fumai injection with clinical combination based on isothermal titration calorimetry.
Hong-yu LIU ; Li-na MA ; Ping ZHANG ; Xue FENG ; Xiao-he XIAO ; Shao-gui LIU ; Ya-ming ZHANG
China Journal of Chinese Materia Medica 2015;40(5):889-893
To reveal the characterization of interaction between Chinese and western medicinal injections, isothermal titration calorimetry (ITC) was applied to evaluating the interaction of Yiqi Fumai injection (YQFM, as mode drug) with epinephrine hydrochloride injection (YS) and 5% glucose injection (5% GS). The diversification of Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were determined to judge the reaction types of colliquefaction procedures of different injections. Meanwhile, the fingerprints of YQFM before and after combined with the various injections were compared to validate the results. This work demonstrated that during the titration procedure of YQFM and YS, [ΔH] > T [ΔS] , that was to say the reaction was enthalpy-driving. And the reactive profile indicated that a great deal of heat gave out during the procedure. Obviously, chemical reactions happened and the internal component changed. On the other side, the reaction of YQFM combined with 5% GS was entropy-driving, because [ΔH] < T [ΔS]. The reactive profile showed there was only a little heat released. So non-chemical reactions happened and the major ingredients did not change. ITC could be applied to the evaluation on compatibility of other kinds of Chinese and western medicinal injection combination.
Calorimetry
;
Drug Interactions
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Entropy
;
Epinephrine
;
chemistry
;
pharmacology
;
Glucose
;
chemistry
;
pharmacology
;
Injections
;
Thermodynamics
10.Determination of the interaction kinetics between meloxicam and β-cyclodextrin using the quantitative high-performance affinity chromatography coupled with mass spectrometry.
Cai-fen WANG ; Zhuo LI ; Xiao-bo WANG ; Hai-yan LI ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2015;50(9):1167-1173
The association rate constant and dissociation rate constant are important parameters of the drug-cyclodextrin supermolecule systems, which determine the dissociation of drugs from the complex and the further in vivo absorption of drugs. However, the current studies of drug-cyclodextrin interactions mostly focus on the thermodynamic parameter of equilibrium constants (K). In this paper, a method based on quantitative high performance affinity chromatography coupled with mass spectrometry was developed to determine the apparent dissociation rate constant (k(off,app)) of drug-cyclodextrin supermolecule systems. This method was employed to measure the k(off,app) of meloxicam and acetaminophen. Firstly, chromatographic peaks of drugs and non-retained solute (uracil) on β-cyclodextrin column at different flow rates were acquired, and the retention time and variance values were obtained via the fitting the peaks. Then, the plate heights of drugs (H(R)) and uracil (H(M,C)) were calculated. The plate height of theoretical non-retained solute (H(M,T)) was calculated based on the differences of diffusion coefficient and the stagnant mobile phase mass transfer between drugs and uracil. Finally, the k(off,app) was calculated from the slope of the regression equation between (H(R)-H(M,T)) and uk/(1+k)2, (0.13 ± 0.00) s(-1) and (4.83 ± 0.10) s(-1) for meloxicam and acetaminophen (control drug), respectively. In addition, the apparent association rate constant (k(on,app)) was also calculated through the product of K (12.53 L x mol(-1)) and k(off,app). In summary, it has been proved that the method established in our study was simple, efficiently fast and reproducible for investigation on the kinetics of drug-cyclodextrin interactions.
Acetaminophen
;
chemistry
;
Chromatography, Affinity
;
Drug Interactions
;
Kinetics
;
Mass Spectrometry
;
Thermodynamics
;
Thiazines
;
chemistry
;
Thiazoles
;
chemistry
;
beta-Cyclodextrins
;
chemistry

Result Analysis
Print
Save
E-mail