1.Effect of "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on reproductive function in mice with asthenozoospermia based on mitochondrial apoptosis.
Jianheng HAO ; Boya CHANG ; Jia REN ; Zhen GAO ; Yanlin ZHANG ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(1):71-81
OBJECTIVE:
To observe the effects of the "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture on key regulatory factors during mitochondrial apoptosis of testicular tissue in asthenozoospermia mice, and explore the potential mechanism of the protective effect of acupuncture on reproductive function.
METHODS:
Thirty C57BL/6 male mice were randomly divided into a blank group, a model group and an acupuncture group, 10 mice in each group. In the model and the acupuncture groups, the intraperitoneal injection of cyclophosphamide (30 mg•kg-1•d-1) was delivered for 7 days to prepare the asthenozoospermia model. After the success of modeling, the modeled mice in the acupuncture group were intervened with "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture, once daily and the needles were retained for 20 min. The duration of the intervention was 2 weeks. The general condition of each mouse was observed, and the body mass was recorded before modeling, after modeling and after intervention completion. After intervention, the testicular mass was recorded and the weight coefficient was calculated, and the mouse sperm quality was examined; the serum contents of testosterone (T), follicle stimulating hormone (FSH) and luteinizing hormone (LH) were detected using ELISA, the morphology of testicular tissue was observed using HE, the mitochondrial ultra-microstructure of testicular tissue was observed under transmission electrone microscopy, the mitochondrial membrane potential level of testicular tissue was detected using JC-1 staining, the positive rate of apoptosis cell of testicular tissue was observed using TUNEL; and the mRNA and protein expression of b-cell lymphocytoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), cytochrome c (Cyt C), apoptotic protease-activating factor1 (Apaf-1), Caspase-9 and Caspase-3 of testicular tissue was detected using real-time quantitative fluorescence PCR and Western blot methods separately; and the positive expression of Cleaved Caspase-3 of the testicular tissue was detected using immunohistochemistry.
RESULTS:
Compared with the blank group, the mice were in listless spirits, had shaggy hairs, the reduced appetite and movement, and weight loss in the model group (P<0.01); the testicular mass and the weight coefficient decreased (P<0.01); the total number of sperms, sperm motility, and sperm viability were declined (P<0.01); while the levels of serum T, FSH, and LH were dropped (P<0.01). The morphology of seminiferous tubules in testicular tissue was abnormal, the number of spermatogenic cells and the number of mitochondria decreased, the inner mitochondrial crest was fractured and lost, and vacuoles appeared. The level of mitochondrial membrane potential was reduced (P<0.01); and the positive rate of apoptosis cell in testicular tissue increased (P<0.01). The mRNA and protein expression of Bax, Cyt C, Apaf-1, Caspase-9 and Caspase-3 was elevated (P<0.01, P<0.05), the mRNA and protein expression of Bcl-2 was dropped (P<0.01), and the average absorbance value of Cleaved Caspase-3 increased (P<0.01). When compared with the model group, in the acupuncture group, the general condition of mice was improved, the testicular mass and the weight coefficient elevated (P<0.01); the total number of sperms, sperm motility, and sperm viability increased (P<0.01); while the levels of serum T, FSH, and LH rose (P<0.01). The pathological morphology of testicular tissue and the inner mitochondrial ultra-microstructure were ameliorated, the level of mitochondrial membrane potential was elevated (P<0.01); the positive rate of apoptosis cell was reduced (P<0.01). The mRNA and protein expression of Bax, Cyt C, Apaf-1, Caspase-9 and Caspase-3 was dropped (P<0.01, P<0.05), the mRNA and protein expression of Bcl-2 elevated (P<0.05), and the average absorbance value of Cleaved Caspase-3 declined (P<0.01).
CONCLUSION
"Zhibian" (BL54)-toward- "Shuidao" (ST28) acupuncture may ameliorate mouse reproductive function by inhibiting mitochondrial apoptosis pathway, alleviating testicular tissue damage in the asthenospermia mice induced by cyclophosphamide.
Animals
;
Male
;
Mice
;
Apoptosis
;
Acupuncture Therapy
;
Mitochondria/metabolism*
;
Asthenozoospermia/genetics*
;
Humans
;
Testis/metabolism*
;
Mice, Inbred C57BL
;
Spermatozoa/metabolism*
;
Acupuncture Points
;
Sperm Motility
;
Testosterone/blood*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Caspase 3/genetics*
;
Follicle Stimulating Hormone/blood*
;
Reproduction
;
Cytochromes c/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Apoptotic Protease-Activating Factor 1/genetics*
2.Mechanism research of "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture technique for improving reproductive function in mice with asthenospermia based on the ferroptosis pathway.
Jianheng HAO ; Boya CHANG ; Qingkai JIN ; Jia REN ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(3):351-360
OBJECTIVE:
To investigate the underlying mechanism of "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture technique for improving reproductive function in mice with asthenospermia by regulating ferroptosis pathway.
METHODS:
Sixty male C57BL/6 mice were randomly divided into a blank group, a model group, an acupuncture group and a Fer-1 group, 15 mice in each one. Except the blank group, the intraperitoneal injection with cyclophosphamide (50·kg-1·d-1) was administered to establish the asthenospermia model in the mice of the rest 3 groups for 5 consecutive days. In the acupuncture group, "Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture technique was operated in the mice, for 20 min each time; and in the Fer-1 group, Fer-1 solution (1 mg/kg) was injected intraperitoneally. The interventions of these two groups were delivered once daily and for 2 consecutive weeks. The testicular wet weight was measured and the testicular coefficient was calculated. Using sperm quality detection system, the sperm quality was detected. With ELISA used, the contents of testosterone (T), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the serum were detected. With HE staining, testicular and epididymal morphology was observed. Immunofluorescence was used to detect the expression of reactive oxygen species (ROS) in the testes. Biochemical assay was conducted to determine the contents of malondialdehyde (MDA), reduced glutathione (GSH), and total iron ion (TFe) in the testicular tissue. Transmission electron microscopy was used to examine mitochondrial structure of the testis, while JC-1 staining was used to assess mitochondrial membrane potential in the testicular tissue. Fluorescence quantitative PCR and Western blot analyses were employed to measure the mRNA and protein expression of solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the testicular tissue.
RESULTS:
Compared with the blank group, in the model group, the testicular wet weight and testicular coefficient decreased (P<0.01); the sperm concentration and sperm motility reduced (P<0.01), and the contents of T, FSH, and LH decreased in the serum (P<0.01); and the seminiferous tubules in the testis showed loose structure and deformed lumen, sperm cells were disorganized and the sperm numbers reduced; the tubular walls became thinner, and sperm numbers in the lumen less; the expression of ROS in testicular tissue, as well as the contents of MDA and TFe increased (P<0.01), and the content of GSH decreased (P<0.01); and the numbers of mitochondria reduced, the structure of cristae was serious damaged, and mitochondrial membrane potential level declined (P<0.01); the mRNA and protein expression of SLC7A11, GPX4, and FTH1 decreased (P<0.01), while the mRNA and protein expression of ACSL4 increased (P<0.01). In comparison with the model group, the acupuncture and Fer-1 groups showed the increase of testicular wet weight and coefficient (P<0.01), sperm concentration and motility (P<0.01), and the serum contents of T, FSH, and LH (P<0.01); and the improvements in testicular and epididymal histopathology; ROS expression and the contents of MDA and TFe decreased (P<0.01), and the content of GSH elevated (P<0.05); the mitochondrial structure and numbers were ameliorated and mitochondrial membrane potential rose (P<0.01). Besides, in comparison with the model group, the mRNA expression of SLC7A11 was higher (P<0.05, P<0.01), the mRNA and protein expression of GPX4 and FTH1 increased (P<0.01, P<0.05), and the mRNA and protein expression of ACSL4 decreased (P<0.01) in the acupuncture and the Fer-1 groups; and the protein expression of SLC7A11 was higher in the Fer-1 group (P<0.05).
CONCLUSION
"Zhibian" (BL54)-toward-"Shuidao" (ST28) acupuncture technique may improve the reproductive capacity in the mice with asthenospermia by alleviating ferroptosis-induced cellular damage and ameliorating testicular function.
Animals
;
Male
;
Ferroptosis
;
Mice
;
Acupuncture Therapy
;
Mice, Inbred C57BL
;
Asthenozoospermia/metabolism*
;
Humans
;
Acupuncture Points
;
Testis/metabolism*
;
Luteinizing Hormone/metabolism*
;
Malondialdehyde/metabolism*
;
Reproduction
;
Testosterone/metabolism*
3.Therapeutic effect of Rendu Tongtiao acupuncture on hyperandrogenism in polycystic ovary syndrome of kidney-yin deficiency induced fire hyperactivity.
Yuane LIU ; Baidan LIAO ; Xian ZHANG ; Chang ZHOU ; Chen CHEN
Chinese Acupuncture & Moxibustion 2025;45(8):1078-1082
OBJECTIVE:
To investigate the clinical therapeutic effect of Rendu Tongtiao acupuncture (acupuncture for regulating and improving the circulation of the conception and governor vessels) on hyperandrogenism (HA) in polycystic ovary syndrome (PCOS) with kidney-yin deficiency induced fire hyperactivity.
METHODS:
A total of 80 PCOS-HA patients were selected and randomly divided into an observation group and a control group, 40 cases in each group. In the control group, ethinylestradiol and cyproterone acetate tablets were administered orally,2 mg each time, once daily and for 21 consecutive days as one menstrual cycle. In the observation group, Rendu Tongtiao acupuncture was delivered at Qihai (CV6), Zhongwan (CV12), Guanyuan (CV4), Zhongji (CV3), Mingmen (GV4), Yaoyangguan (GV3), etc. once daily till ovulation, which was taken as the treatment session of one menstrual cycle. The treatment was completed after 3 menstrual cycles in each group. Before and after treatment, the serum levels of testosterone (T), dihydrotestosterone (DHT), luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL), sex hormone-binding globulin (SHBG), and the scores of acne and hirsutism were compared in the two groups; besides, menstrual recovery rate, ovulation recovery rate, basic body temperature (BBT) biphasic rate and clinical effect were compared between the two groups.
RESULTS:
Compared with those before treatment, the levels of T, DHT, LH and PRL, as well as the scores of acne and hirsutism were reduced in the two groups after treatment (P<0.05), and the levels of FSH and SHBG were increased (P<0.05). After treatment, the levels of T, DHT, LH and PRL, as well as the scores of acne and hirsutism in the observation group were lower than those in the control group (P<0.05); and FSH and SHBG were higher (P<0.05). After treatment, the menstrual recovery rate and ovulation recovery rate, as well as BBT biphasic rate in the observation group increased in comparison with the control group (P<0.05). The total effective rate was 97.5% (39/40) in the observation group, which was higher than 82.4% (33/40) of the control group (P<0.05).
CONCLUSION
Rendu Tongtiao acupuncture can effectively regulate the secretion of hormones, alleviate the clinical symptoms of HA, and accelerate the recovery of menstruation and natural ovulation in patients with PCOS-HA of kidney-yin deficiency induced fire hyperactivity .
Humans
;
Female
;
Polycystic Ovary Syndrome/complications*
;
Acupuncture Therapy
;
Adult
;
Young Adult
;
Hyperandrogenism/blood*
;
Yin Deficiency/therapy*
;
Kidney/physiopathology*
;
Acupuncture Points
;
Testosterone/blood*
;
Luteinizing Hormone/blood*
;
Follicle Stimulating Hormone/blood*
;
Adolescent
4.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
5.Efficacy and mechanism of Cistanches Herba extract in treating reproductive dysfunction in rats with kidney-Yang deficiency based on metabolomics.
Ze-Hui LI ; Pan-Yu XU ; Jia-Shan LI ; Li GUO ; Yuan LI ; Si-Qi LI ; Na LIN ; Ying XU
China Journal of Chinese Materia Medica 2025;50(7):1850-1860
This study investigates the reproductive protective effect and potential mechanism of Cistanches Herba extract(CHE) on a rat model of kidney-Yang deficiency induced by adenine. Rats were randomly divided into five groups: normal, model, low-dose CHE(0.6 g·kg~(-1)·d~(-1)), high-dose CHE(1.2 g·kg~(-1)·d~(-1)), and L-carnitine(100 mg·kg~(-1)·d~(-1)). The rats were administered adenine(200 mg·kg~(-1)·d~(-1)) by gavage for the first 14 days to induce kidney-Yang deficiency, while simultaneously receiving drug treatment. After 14 days, the modeling was discontinued, but drug treatment continued to 49 days. The content of components in CHE was analyzed by high-performance liquid chromatography. The adenine-induced kidney-Yang deficiency model was assessed through symptom characterization and measurement of testosterone(T) levels using an enzyme-linked immunosorbent assay kit. Pathological damage to the testis and epididymis was evaluated based on the wet weight and performing hematoxylin-eosin staining. Sperm density and motility were measured using computer-aided sperm analysis, and sperm viability was assessed using live/dead sperm staining kits, and sperm morphology was evaluated using eosin staining, thereby determining rat sperm quality. Metabolomics was used to analyze changes in serum metabolites, enrich related metabolic pathways, and explore the mechanism of CHE in improving reproductive function damage in rats with kidney-Yang deficiency syndrome. Compared to the normal group, the model group exhibited significant kidney-Yang deficiency symptoms, reduced T levels, decreased testicular and epididymal wet weights, and significant pathological damage to the testis and epididymis. The sperm density, motility, and viability decreased, with an increased rate of sperm abnormalities. In contrast, rats treated with CHE showed marked improvements in kidney-Yang deficiency symptoms, restored T levels, alleviated pathological damage to the testis and epididymis, and improved various sperm parameters. Metabolomics results revealed 286 differential metabolites between the normal and model groups(191 upregulated and 95 downregulated). Seventy-five differential metabolites were identified between the model and low-dose CHE groups(21 upregulated and 54 downregulated). A total of 24 common differential metabolites were identified across the three groups, with 22 of these metabolites exhibiting opposite regulation trends between the two comparison groups. These metabolites were primarily involved in linoleic acid metabolism, ether lipid metabolism, and pantothenic acid and coenzyme A biosynthesis, as well as metabolites including 13-hydroperoxylinoleic acid, lysophosphatidylcholine, and pantethine. CHE can improve kidney-Yang deficiency symptoms in rats, alleviate reproductive organ damage, and enhance sperm quality. The regulation of lipid metabolism may be a potential mechanism through which CHE improves reproductive function in rats with kidney-Yang deficiency. The potential bioactive compounds of CHE include echinacoside, verbascoside, salidroside, betaine, and cistanoside A.
Animals
;
Male
;
Rats
;
Yang Deficiency/physiopathology*
;
Metabolomics
;
Kidney/physiopathology*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Cistanche/chemistry*
;
Kidney Diseases/metabolism*
;
Testis/metabolism*
;
Humans
;
Reproduction/drug effects*
;
Testosterone/blood*
6.The SPARC-related modular calcium binding 1 ( Smoc1 ) regulated by androgen is required for mouse gubernaculum development and testicular descent.
Zhi-Yi ZHAO ; Yong SIOW ; Ling-Yun LIU ; Xian LI ; Hong-Liang WANG ; Zhen-Min LEI
Asian Journal of Andrology 2025;27(1):44-51
Testicular descent occurs in two consecutive stages: the transabdominal stage and the inguinoscrotal stage. Androgens play a crucial role in the second stage by influencing the development of the gubernaculum, a structure that pulls the testis into the scrotum. However, the mechanisms of androgen actions underlying many of the processes associated with gubernaculum development have not been fully elucidated. To identify the androgen-regulated genes, we conducted large-scale gene expression analyses on the gubernaculum harvested from luteinizing hormone/choriogonadotropin receptor knockout ( Lhcgr KO) mice, an animal model of inguinoscrotal testis maldescent resulting from androgen deficiency. We found that the expression of secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 ( Smoc1 ) was the most severely suppressed at both the transcript and protein levels, while its expression was the most dramatically induced by testosterone administration in the gubernacula of Lhcgr KO mice. The upregulation of Smoc1 expression by testosterone was curtailed by the addition of an androgen receptor antagonist, flutamide. In addition, in vitro studies demonstrated that SMOC1 modestly but significantly promoted the proliferation of gubernacular cells. In the cultures of myogenic differentiation medium, both testosterone and SMOC1 enhanced the expression of myogenic regulatory factors such as paired box 7 ( Pax7 ) and myogenic factor 5 ( Myf5 ). After short-interfering RNA-mediated knocking down of Smoc1 , the expression of Pax7 and Myf5 diminished, and testosterone alone did not recover, but additional SMOC1 did. These observations indicate that SMOC1 is pivotal in mediating androgen action to regulate gubernaculum development during inguinoscrotal testicular descent.
Animals
;
Male
;
Mice
;
Testis/growth & development*
;
Mice, Knockout
;
Androgens/pharmacology*
;
Testosterone/pharmacology*
;
Receptors, LH/metabolism*
;
Calcium-Binding Proteins/metabolism*
7.Exploring the clinical implications of novel SRD5A2 variants in 46,XY disorders of sex development.
Yu MAO ; Jian-Mei HUANG ; Yu-Wei CHEN-ZHANG ; He LIN ; Yu-Huan ZHANG ; Ji-Yang JIANG ; Xue-Mei WU ; Ling LIAO ; Yun-Man TANG ; Ji-Yun YANG
Asian Journal of Andrology 2025;27(2):211-218
This study was conducted retrospectively on a cohort of 68 patients with steroid 5 α-reductase 2 (SRD5A2) deficiency and 46,XY disorders of sex development (DSD). Whole-exon sequencing revealed 28 variants of SRD5A2 , and further analysis identified seven novel mutants. The preponderance of variants was observed in exon 1 and exon 4, specifically within the nicotinamide adenine dinucleotide phosphate (NADPH)-binding region. Among the entire cohort, 53 patients underwent initial surgery at Sichuan Provincial People's Hospital (Chengdu, China). The external genitalia scores (EGS) of these participants varied from 2.0 to 11.0, with a mean of 6.8 (standard deviation [s.d.]: 2.5). Thirty patients consented to hormone testing. Their average testosterone-to-dihydrotestosterone (T/DHT) ratio was 49.3 (s.d.: 23.4). Genetic testing identified four patients with EGS scores between 6 and 9 as having this syndrome; and their T/DHT ratios were below the diagnostic threshold. Furthermore, assessments conducted using the crystal structure of human SRD5A2 have provided insights into the potential pathogenic mechanisms of these novel variants. These mechanisms include interference with NADPH binding (c.356G>C, c.365A>G, c.492C>G, and c.662T>G) and destabilization of the protein structure (c.727C>T). The c.446-1G>T and c.380delG variants were verified to result in large alterations in the transcripts. Seven novel variations were identified, and the variant database for the SRD5A2 gene was expanded. These findings contribute to the progress of diagnostic and therapeutic approaches for individuals with SRD5A2 deficiency.
Humans
;
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics*
;
Disorder of Sex Development, 46,XY/blood*
;
Male
;
Membrane Proteins/genetics*
;
Child, Preschool
;
Child
;
Retrospective Studies
;
Adolescent
;
Female
;
Mutation
;
Testosterone/blood*
;
Infant
;
Dihydrotestosterone/blood*
8.Clinician's guide to the management of azoospermia induced by exogenous testosterone or anabolic-androgenic steroids.
Manaf Al HASHIMI ; Germar-Michael PINGGERA ; Rupin SHAH ; Ashok AGARWAL
Asian Journal of Andrology 2025;27(3):330-341
Azoospermia, defined as the absence of sperm in the ejaculate, is a well-documented consequence of exogenous testosterone (ET) and anabolic-androgenic steroid (AAS) use. These agents suppress the hypothalamic-pituitary-gonadal (HPG) axis, leading to reduced intratesticular testosterone levels and impaired spermatogenesis. This review examines the pathophysiological mechanisms underlying azoospermia and outlines therapeutic strategies for recovery. Azoospermia is categorized into pretesticular, testicular, and post-testicular types, with a focus on personalized treatment approaches based on the degree of HPG axis suppression and baseline testicular function. Key strategies include discontinuing ET and monitoring for spontaneous recovery, particularly in patients with shorter durations of ET use. For cases of persistent azoospermia, gonadotropins (human chorionic gonadotropin [hCG] and follicle-stimulating hormone [FSH]) and selective estrogen receptor modulators (SERMs), such as clomiphene citrate, are recommended, either alone or in combination. The global increase in exogenous testosterone use, including testosterone replacement therapy and AAS, underscores the need for improved management of associated azoospermia, which can be temporary or permanent depending on individual factors and the type of testosterone used. Additionally, the manuscript discusses preventive strategies, such as transitioning to short-acting testosterone formulations or incorporating low-dose hCG to preserve fertility during ET therapy. While guidelines for managing testosterone-related azoospermia remain limited, emerging research indicates the potential efficacy of hormonal stimulation therapies. However, there is a notable lack of well-structured, controlled, and long-term studies addressing the management of azoospermia related to exogenous testosterone use, highlighting the need for such studies to inform evidence-based recommendations.
Humans
;
Azoospermia/therapy*
;
Male
;
Testosterone/therapeutic use*
;
Anabolic Agents/adverse effects*
;
Clomiphene/therapeutic use*
;
Chorionic Gonadotropin/therapeutic use*
;
Follicle Stimulating Hormone/therapeutic use*
;
Spermatogenesis/drug effects*
;
Androgens/adverse effects*
9.Late-onset hypogonadism: current methods of clinical diagnosis and treatment in Japan.
Asian Journal of Andrology 2025;27(4):447-453
Testosterone affects several organs in the body and is very important for male well-being. Aging men with late-onset hypogonadism (LOH) experience physiologic, psychiatric, and sexual symptoms related to a decline in the serum concentration of testosterone with age. However, it is well-known that the extent of the decline in testosterone concentration does not correlate with the severity of LOH-related symptoms. Therefore, it is difficult to diagnose and treat patients with LOH. In addition, the symptoms, response to testosterone replacement therapy (TRT), and medical insurance coverage differ among ethnicities and countries. The evaluation of testosterone is essential for the diagnosis and treatment of LOH. The effects of testosterone are determined not only by the serum testosterone concentration but also by the androgen receptor sensitivity. A low number of glutamine repeats is indicative of high androgenic activity, and the number shows ethnicity-related differences (fewer in African American than in Caucasian people and more in East Asian people). The diagnosis of LOH is typically made using subjective symptoms and the serum testosterone concentration. The Aging Male Symptoms scale is widely used to evaluate the symptoms. The normal range of total testosterone concentration varies around the world; therefore, clinicians should follow the guidelines of their regional academic society. The principal treatment for LOH is TRT. There are many types of TRT and other treatment strategies are also available. Thus, physicians should treat LOH according to each patient's situation, considering related disorders, such as diabetes, osteoporosis, metabolic syndrome, and depression.
Humans
;
Male
;
Hypogonadism/drug therapy*
;
Testosterone/blood*
;
Hormone Replacement Therapy/methods*
;
Japan
;
Age of Onset
;
Aging
;
Aged
;
Androgens/therapeutic use*
10.Regulation of testosterone synthesis by circadian clock genes and its research progress in male diseases.
Gang NING ; Bo-Nan LI ; Hui WU ; Ruo-Bing SHI ; A-Jian PENG ; Hao-Yu WANG ; Xing ZHOU
Asian Journal of Andrology 2025;27(5):564-573
The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms. Testosterone, as one of the most critical sex hormones, is essential for the development of the reproductive system, maintenance of reproductive function, and the overall health of males. The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes. Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis. We also examined the specific effects of these genes on the occurrence, development, and treatment of common male diseases, including late-onset hypogonadism, erectile dysfunction, male infertility, and prostate cancer.
Testosterone/metabolism*
;
Humans
;
Male
;
Circadian Clocks/genetics*
;
Circadian Rhythm Signaling Peptides and Proteins/metabolism*
;
Circadian Rhythm/physiology*
;
Hypogonadism/metabolism*
;
Erectile Dysfunction/metabolism*
;
Infertility, Male/metabolism*
;
Prostatic Neoplasms/metabolism*
;
Men's Health

Result Analysis
Print
Save
E-mail