1.Research progress on chemical constituents from Chloranthus plants and their biological activities.
Fang-You CHEN ; Yu-Ting BIAN ; Wei-Ming HUANG ; Zhi-Chao CHEN ; Peng-Cheng SHUANG ; Zhi-Guang FENG ; Yong-Ming LUO
China Journal of Chinese Materia Medica 2021;46(15):3789-3796
The genus Chloranthus has 13 species and 5 varieties in China, which can be found in the southwest and northeast regions. Phytochemical studies on Chloranthus plants have reported a large amount of terpenoids, such as diterpenoids, sesquiterpenoids, and sesquiterpenoid dimers. Their anti-inflammation, anti-tumor, antifungal, antivirus, and neuroprotection activities have been confirmed by previous pharmacological research. Herein, research on the chemical constituents from Chloranthus plants and their biological activities over the five years was summarized to provide scientific basis for the further development and utilization of Chloranthus plants.
Diterpenes
;
Phytochemicals/pharmacology*
;
Plants
;
Sesquiterpenes/pharmacology*
;
Terpenes
2.Research progress on chemical constituents and pharmacological activities of Viola plants.
Min ZHANG ; You-Heng GAO ; Ye LI ; Ya-Qiong BI ; Chun-Hong ZHANG ; Min-Hui LI ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(5):1145-1175
There are 500 species of Viola(Violaceae) worldwide, among which 111 species are widely distributed in China and have a long medicinal history and wide varieties. According to the authors' statistics, a total of 410 compounds have been isolated and identified from plants of this genus, including flavonoids, terpenoids, phenylpropanoids, organic acids, nitrogenous compounds, sterols, saccharides and their derivatives, volatile oils and cyclotides. The medicinal materials from these plants boast anti-microbial, anti-viral, anti-oxidant and anti-tumor activities. This study systematically reviewed the chemical constituents and pharmacological activities of Viola plants to provide a basis for further research and clinical application.
Viola/chemistry*
;
Plant Extracts/pharmacology*
;
Flavonoids
;
Terpenes/pharmacology*
;
China
3.Research progress of Curcuma kwangsiensis root tubers and analysis of liver protection and anti-tumor mechanisms based on Q-markers.
Ze-Yu LI ; Er-Wei HAO ; Zheng-Cai DU ; Rui CAO ; Feng CHEN ; Liu-Ying MO ; Dong-Yang WU ; Xiao-Tao HOU ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2022;47(7):1739-1753
Curcuma kwangsiensis root tuber is a widely used genuine medicinal material in Guangxi, with the main active components of terpenoids and curcumins. It has the effects of promoting blood circulation to relieve pain, moving Qi to relieve depression, clearing heart and cooling blood, promoting gallbladder function and anti-icterus. Modern research has proved its functions in liver protection, anti-tumor, anti-oxidation, blood lipid reduction and immunosuppression. Considering the research progress of C. kwangsiensis root tubers and the core concept of quality marker(Q-marker), we predicted the Q-markers of C. kwangsiensis root tubers from plant phylogeny, chemical component specificity, traditional pharmacodynamic properties, new pharmacodynamic uses, chemical component measurability, processing methods, compatibility, and components migrating to blood. Curcumin, curcumol, curcumadiol, curcumenol, curdione, germacrone, and β-elemene may be the possible Q-markers. Based on the predicted Q-markers, the mechanisms of the liver-protecting and anti-tumor activities of C. kwangsiensis root tubers were analyzed. AKT1, IL6, EGFR, and STAT3 were identified as the key targets, and neuroactive ligand-receptor interaction signaling pathway, nitrogen metabolism pathway, cancer pathway, and hepatitis B pathway were the major involved pathways. This review provides a basis for the quality evaluation and product development of C. kwangsiensis root tubers and gives insights into the research on Chinese medicinal materials.
China
;
Curcuma/chemistry*
;
Humans
;
Liver
;
Neoplasms
;
Terpenes/pharmacology*
4.Research progress on natural products of fungi of Diaporthe sp.
Jia CAI ; Wen-Ying ZHOU ; Guang-Ming XU ; Xiao-Jiang ZHOU
China Journal of Chinese Materia Medica 2021;46(7):1717-1726
Diaporthe sp. fungi is one of the important sources of active natural products. Polyketides, alkaloids, terpenes, anthraquinones and other types of novel metabolic products are found from this genus, and many of them have significant anti-tumor, antibacterial, anti-hyperlipidemia, inhibition of pulmonary fibrosis, antioxidant and other biological activities. This paper reviewed source, structure and biological activity of natural products from Diaporthe sp. in the past two decades, and provided a reference for in-depth study of natural product of this genus fungus and innovative drug development.
Anti-Bacterial Agents
;
Biological Products/pharmacology*
;
Fungi
;
Polyketides
;
Terpenes
5.Chemical constituents of Psidium guajava and their antitumor and antifungal activities.
Xiao-Cong LIU ; Dong-Mei LIN ; Min LIU ; Min ZHANG ; Qiang LI ; Jian WANG ; Lu-Lin XU ; Yuan GAO ; Jian YANG
China Journal of Chinese Materia Medica 2021;46(15):3877-3885
Twenty-six compounds, including sixteen meroterpenoids(1-16), a triterpenoid(17), four terpenoid derivatives(18-21), and five aromatic compounds(22-26), were isolated from the leaves of Psidium guajava. Their structures were identified by spectroscopic analyses including NMR and MS. Compounds 21-26 were obtained from plants of Psidium for the first time. Based on the structure,(R)-2-ethylhexyl 2H-1,2,3-triazole-4-carboxylate(24 a), an α-glucosidase inhibitor recently isolated from Paramignya trimera, should be revised as compound 24. Meroterpenoids 1-16 were evaluated for their antitumor and antifungal activities. Meroterpenoids psiguajadial D(4), guapsidial A(5), 4,5-diepipsidial A(7), guadial A(14), and guadial B(15) showed cytotoxicities against five human tumor cell lines(HL-60, A-549, SMMC-7721, MCF-7, and SW-480), among which 5 was the most effective with an IC_(50) of 3.21-9.94 μmol·L~(-1).
Antifungal Agents/pharmacology*
;
Humans
;
Magnetic Resonance Spectroscopy
;
Plant Extracts
;
Plant Leaves
;
Psidium
;
Terpenes
6.Research advances in chemical constituents and pharmacological activities of different parts of Eucommia ulmoides.
Cong LIU ; Fei-Fei GUO ; Jun-Ping XIAO ; Jun-Ying WEI ; Li-Ying TANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2020;45(3):497-512
To date, 205 compounds have been identified from different medicinal parts of Eucommia ulmoides, including lignans, iridoid terpenoids, phenols, flavonoids, terpenoids and steroids, polysaccharides and others. Their pharmacological effects include blood pressure-lowering, blood sugar-lowering, blood lipids-regulating, prevention of osteoporosis, anti-inflammation, liver protection, anti-cancer and so on. Their efficacy and mechanism from different parts are slightly different. In this paper, the chemical composition, pharmacological action and mechanism of different parts of E. ulmoides were systematically summarized, as well as its quality control and processing research, to provide theoretical basis for further rational development and utilization of E. ulmoides.
Eucommiaceae/chemistry*
;
Flavonoids
;
Iridoids
;
Lignans
;
Phenols
;
Phytochemicals/pharmacology*
;
Plants, Medicinal/chemistry*
;
Polysaccharides
;
Steroids
;
Terpenes
7.Effect of GR24 on accumulation of diterpenoids in Tripterygium wilfordii suspension cells.
Xiao-Yi WU ; Rui ZHANG ; Yun MA ; Ling-Jia MENG ; Li-Chan TU ; Tian-Yuan HU ; Wei GAO
China Journal of Chinese Materia Medica 2019;44(16):3582-3587
Terpenoids are main bioactive components in Tripterygium wilfordii,but the contents of some terpenoids are relatively low. In order to provide scientific evidence for the regulation of terpenoids in T. wilfordii,this research explored the effect of GR24 on accumulations of four diterpenoids( triptolide,tripterifordin,triptophenolide,and triptinin B) in T. wilfordii suspension cells by biological technology and UPLC-QQQ-MS/MS. The results indicated that 100 μmol·L-1 GR24 inhibited the accumulations of triptolide,tripterifordin,triptophenolide,and triptinin B to different degrees. Compared with the control group,the contents of 4 diterpenoids( in the induced group) were down to 96.59%,63.80%,61.02% and 33.59% in 240 h,respectively. Among them,the accumulation of triptinin B iswas significantly inhibited. In addition,the key time point of inhibitory effect was 120 h after induction with GR24 in some diterpenoids. This is the first systematic study focusing on the effect of GR24 on the accumulations of diterpenoids in T. wilfordii suspension cells. The dynamic accumulation ruleregularity of four diterpenoids after induced by GR24 was summarized,which laid a foundation for further study on the chemical response mechanism of terpenoids to GR24.
Cells, Cultured
;
Diterpenes
;
pharmacokinetics
;
Humans
;
Lactones
;
pharmacology
;
Tandem Mass Spectrometry
;
Terpenes
;
Tripterygium
;
chemistry
8.Five new terpenoids from Viburnum odoratissimum var. sessiliflorum.
Yang LI ; Yajiao JIAN ; Fan XU ; Yongxin LUO ; Zhixuan LI ; Yi OU ; Yan WEN ; Jingwei JIN ; Chuanrui ZHANG ; Lishe GAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):298-307
Five new terpenoids, including two vibsane-type diterpenoids (1, 2) and three iridoid allosides (3-5), together with eight known ones, were isolated from the leaves and twigs of Viburnum odoratissimum var.sessiliflorum. Their planar structures and relative configurations were determined by spectroscopic methods, especially 2D NMR techniques. The sugar moieties of the iridoids were confirmed as β-D-allose by GC analysis after acid hydrolysis and acetylation. The absolute configurations of neovibsanin Q (1) and dehydrovibsanol B (2) were determined by quantum chemical calculation of their theoretical electronic circular dichroism (ECD) spectra and Rh2(OCOCF3)4-induced ECD analysis. The anti-inflammatory activities of compounds 1, 3, 4, and 5 were evaluated using an LPS-induced RAW264.7 cell model. Compounds 3suppressed the release of NO in a dose-dependent manner, with an IC50 value of 55.64 μmol·L-1. The cytotoxicities of compounds 1-5 on HCT-116 cells were assessed and the results showed that compounds 2 and 3 exhibited moderate inhibitory activities with IC50 values of 13.8 and 12.3 μmol·L-1, respectively.
Terpenes/pharmacology*
;
Viburnum/chemistry*
;
Molecular Structure
;
Diterpenes/chemistry*
;
Plant Leaves/chemistry*
9.Therapeutic Potential of Myrrh and Ivermectin against Experimental Trichinella spiralis Infection in Mice.
Maha M A BASYONI ; Abdel Aleem A EL-SABAA
The Korean Journal of Parasitology 2013;51(3):297-304
Trichinosis is a parasitic zoonosis caused by the nematode Trichinella spiralis. Anthelmintics are used to eliminate intestinal adults as well as tissue-migrating and encysted larvae. This study aimed to investigate the effects of ivermectin and myrrh obtained from the aloe-gum resin of Commiphora molmol on experimental trichinosis. Ninety albino mice were orally infected with 300 T. spiralis larvae. Drugs were tested against adult worms at day 0 and day 5 and against encysted larvae on day 15 and day 35 post-infection (PI). Mature worms and encysted larvae were counted in addition to histopathological examination of muscle specimens. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein, albumin, globulin, urea, and creatinine values were estimated. Significant reductions in mean worm numbers were detected in ivermectin treated mice at day 0 and day 5 PI achieving efficacies of 98.5% and 80.0%, while efficacies of myrrh in treated mice were 80.7% and 51.5%, respectively. At days 15 and 35 post-infection, ivermectin induced significant reduction in encysted larval counts achieving efficacies of 76.5% and 54.0%, respectively, while myrrh efficacies were 76.6% and 35.0%, respectively. AST, ALT, urea, and creatinine levels were reduced, while total proteins were increased in response to both treatments compared to their values in the infected non-treated mice. Ivermectin use for controlling T. spiralis could be continued. Myrrh was effective and could be a promising drug against the Egyptian strains of T. spiralis with results nearly comparable to ivermectin.
Animals
;
Antiparasitic Agents/administration & dosage/*pharmacology
;
Drug Therapy, Combination
;
Ivermectin/administration & dosage/*pharmacology
;
Mice
;
Terpenes/administration & dosage/*pharmacology
;
*Trichinella spiralis
;
Trichinellosis/*drug therapy
10.Anti-virus research of triterpenoids in licorice.
Jie-Ying PU ; Li HE ; Si-Yu WU ; Ping ZHANG ; Xi HUANG
Chinese Journal of Virology 2013;29(6):673-679
Licorice is a leguminous plant of glycyrrhiza. It is a traditional Chinese herbal medicine. Triterpenoid is one of the mainly active components of licorice. In recent years, the broad-spectrum antiviral activity of many triterpenoids in licorice was confirmed, and these findings have become a hot spot of antiviral immunity. The triterpenoids of licorice has the potential to become a novel broad-spectrum antiviral medicine and will be widely used in the clinical treatment. This review provided a summary of the recent anti-virus research progress on several triterpenoids in licorice, such as glycyrrhizic acid, glycyrrhizin, glycyrrhetinic acid and its derivatives. The antiviral roles of triterpenoids in licorice against herpes virus, HIV, hepatitis virus, SARS coronavirus and influenza virus were briefly summarized.
Animals
;
Antiviral Agents
;
chemistry
;
pharmacology
;
Glycyrrhiza
;
chemistry
;
Humans
;
Plant Extracts
;
chemistry
;
pharmacology
;
Terpenes
;
chemistry
;
pharmacology
;
Virus Diseases
;
drug therapy
;
virology
;
Viruses
;
drug effects