1.The Effect and Mechanism of Novel Telomerase Inhibitor Nilo 22 on Leukemia Cells.
Jing-Jing YIN ; Qian TANG ; Jia-Li GU ; Ya-Fang LI ; Hui-Er GAO ; Mei HE ; Ming YANG ; Wen-Shan ZHANG ; Hui XU ; Chao-Qun WANG ; Ying-Hui LI ; Cui-Gai BAI ; Ying-Dai GAO
Journal of Experimental Hematology 2021;29(4):1056-1064
OBJECTIVE:
To investigate the cytotoxic effect and its mechanism of the micromolecule compound on the leukemia cells.
METHODS:
The cytotoxic effects of 28 Nilotinib derivatives on K562, KA, KG, HA and 32D cell lines were detected by MTT assays, and the compound Nilo 22 was screen out. Cell apoptosis and cell cycle on leukemia cells were detected by flow cytometry. The effect of compound screened out on leukemogenesis potential of MLL-AF9 leukemia mice GFP
RESULTS:
Nilo 22 serves as the most outstanding candidate out of 28 Nilotinib derivatives, which impairs leukemia cell lines, but spares normal hematopoietic cell line. Comparing with Nilotinib, Nilo 22 could induce the apoptosis of GFP
CONCLUSION
Nilo 22 shows a significant cytotoxic effect on mice and human leukemia cells, especially for drug resistance cells. Nilo 22 is a promising anti-leukemia agent to solve the common clinical problems of drug resistance and relapse of leukemia.
Animals
;
Apoptosis/drug effects*
;
Cell Cycle/drug effects*
;
Cell Line, Tumor
;
Humans
;
Leukemia
;
Mice
;
Myeloid-Lymphoid Leukemia Protein/genetics*
;
Telomerase/metabolism*
;
Telomere/metabolism*
2.Association between telomere length and occupational polycyclic aromatic hydrocarbons exposure.
Ping BIN ; Shu-guang LENG ; Juan CHENG ; Zu-fei PAN ; Hua-wei DUAN ; Yu-fei DAI ; Hai-shan LI ; Yong NIU ; Qing-jun LIU ; Qing LIU ; Yu-xin ZHENG
Chinese Journal of Preventive Medicine 2010;44(6):535-538
OBJECTIVETo explore the association between polycyclic aromatic hydrocarbons (PAHs) exposure and telomere length (TL), so as to investigate the effective biomarkers to evaluate the genetic damage in peripheral blood of workers exposed to PAHs.
METHODSThe exposure group consisted of 145 coke-oven workers (including 30 top-oven workers, 76 side-oven workers and 39 bottom-oven workers), and the non-exposure control group comprised 68 medical staffs. At 6 hours after the weekend duty shift, the samples of urine and 1 ml venous blood were collected from each subject. Airborne benzene-soluble matter (BSM) and particulate-phase B(a)P in the working environment of coke-oven and controls were sampled and analyzed. The concentration of urinary 1-hydroxypyrene (1-OHPyr) was determined. A real-time PCR method was used to determine the relative telomere length (RTL) of genomic DNA in peripheral blood. The relationship between the RTL and external exposure of PAHs, the potential factors which might have influence on TL were analyzed.
RESULTSThe medians of air BSM and particulate-phase B(a)P were higher in coke-oven (BSM: 328.6 µg/m(3); B(a)P: 926.9 ng/m(3)) than those in control working environment (BSM:97.8 µg/m(3); B(a)P: 49.1 ng/m(3)). The level of 1-OHPyr among coke-oven workers was significantly higher than that of non-exposed group (12.2 µmol/mol Cr vs 0.7 µmol/mol Cr; t = 26.971, P < 0.01). RTL in coke-oven workers were significantly shorter than those of controls (1.10 ± 0.75 vs 1.43 ± 1.06; t = 2.263, P = 0.026), and after adjusting for cigarettes per day and urinary 1-OHPyr, the significant difference was still observed (F(adju) = 5.496, P(adju) = 0.020). Stratification analysis found that RTL among the male and non-drinking groups in coke-oven workers were shorter than those the same sex and alcohol using status in controls (1.08 ± 0.73 vs 1.51 ± 1.10, F = 9.212, P = 0.003; 0.96 ± 0.38 vs 1.26 ± 0.46, F = 6.484, P = 0.012). Significant correlation between RTL and age was found (r = -0.284, P = 0.019) in non-exposure group.
CONCLUSIONPAH-exposure has effect on TL of genomic DNA in peripheral blood, which is mainly observed in the male and non-drinking groups between PAH-exposed workers and controls. It indicates that TL of genomic DNA in peripheral blood might be an effective biomarker as PAH-induced genetic damage.
Adult ; Benzene ; Case-Control Studies ; Coke ; DNA Damage ; Female ; Humans ; Male ; Occupational Exposure ; adverse effects ; analysis ; Polycyclic Aromatic Hydrocarbons ; adverse effects ; analysis ; Pyrenes ; analysis ; Telomere ; drug effects ; genetics
3.DNA methylation and telomere damage in occupational people exposed to coal tar pitch.
Yanbin WANG ; Xiaoran DUAN ; Yuhong ZHANG ; Sihua WANG ; Wu YAO ; Shibin WANG ; Wei WANG ; Yongjun WU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(7):507-511
OBJECTIVETo investigate the promoter methylation of p16, FHIT and RASSF1A gene and telomere damage in the workers exposed to coal tar pitch, and to explore the effective biomarker of occupational exposure to coal tar pitch.
METHODS180 cases of workers exposed to coal tar pitch in a certain carbon plant named as exposure group, and 145 healthy cases with a medical examination in the first affiliated hospital of Zhengzhou University were selected as control group. Relative telomere length in peripheral blood DNA was detected using real-time quantitative PCR, and the promoter methylation rate of p16, RASSF1A and FHIT gene in peripheral blood DNA were determined by real-time quantitative methylation specific PCR. The relative telomere length and gene promoter methylation in two groups were compared, and influencing factors were analyzed.
RESULTSRelative telomere length in exposed group was lower than that in the control group, and the difference was statistically significant (Z = -5.395, P < 0.001). There was no significant difference in the promoter methylation rate of p16, FHIT and RASSF1A gene between the two groups (P > 0.05). Stratification analysis by gender, age, and smoking, we found that when the age was less than or equal to 40, the promoter methylation rate of p16 in exposed group was more than that in control group, and the difference was statistically significant (Z = -1.914, P = 0.011).
CONCLUSIONOccupational exposure to coal tar pitch may induce leukocyte DNA telomere length of human peripheral blood shortened, and may not change the promoter methylation rates of p16, FHIT and RASSF1A gene.
Acid Anhydride Hydrolases ; genetics ; Coal Tar ; adverse effects ; Cyclin-Dependent Kinase Inhibitor p16 ; genetics ; DNA Methylation ; Humans ; Leukocytes ; drug effects ; Neoplasm Proteins ; genetics ; Occupational Exposure ; adverse effects ; Promoter Regions, Genetic ; Telomere ; drug effects ; ultrastructure ; Tumor Suppressor Proteins ; genetics
4.Comparative binding of antitumor drugs to DNA containing the telomere repeat sequence.
Dongchul SUH ; Yu Kyoung OH ; Byung Chan AHN ; Man Wook HUR ; Hye Ja KIM ; Mi Hyoung LEE ; Hyo Soon JOO ; Chung Kyoon AUH
Experimental & Molecular Medicine 2002;34(5):326-331
Telomeres are the ends of the linear chromosomes of eukaryotes and consist of tandem GT-rich repeats in telomere sequence i.e. 500-3000 repeats of 5'-TTAGGG-3' in human somatic cells, which are shortened gradually with age. The G-rich overhang of telomere sequence can adopt different intramolecular fold-backs and tetra-stranded DNA structures, in vitro, which inhibit telomerase activity. In this report, DNA binding agents to telomere sequence were studied novel therapeutic possibility to destabilize telomeric DNA sequences. Oligonucleotides containing the guanine repeats in human telomere sequence were synthesized and used for screening potential antitumor drugs. Telomeric DNA sequence was characterized using spectral measurements and CD spectroscopy. CD spectrum indicated that the double-stranded telomeric DNA is in a right-handed conformation. Polyacrylamide gel electrophoresis was performed for binding behaviors of antitumor compounds with telomeric DNA sequence. Drugs interacted with DNA sequence caused changes in the electrophoretic mobility and band intensity of the gels. Depending on the binding mode of the anticancer drugs, telomeric DNA sequence was differently recognized and the efficiency of cleavage of DNA varies in the bleomycin-treated samples under different conditions. DNA cleavage occurred at about 1% by the increments of 1 mM bleomycin-Fe(III). These results imply that the stability of human telomere sequence is important in conjunction with the cancer treatment and aging process.
Antineoplastic Agents/*metabolism
;
Bleomycin/metabolism/pharmacology
;
Circular Dichroism
;
Comparative Study
;
DNA/chemistry/drug effects/*metabolism
;
DNA Damage
;
Dactinomycin/metabolism
;
Doxorubicin/*analogs & derivatives/metabolism
;
Human
;
Nogalamycin/metabolism
;
Nucleic Acid Conformation
;
*Repetitive Sequences, Nucleic Acid
;
Telomere/drug effects/*genetics
5.Vitamin C alleviates aging defects in a stem cell model for Werner syndrome.
Ying LI ; Weizhou ZHANG ; Liang CHANG ; Yan HAN ; Liang SUN ; Xiaojun GONG ; Hong TANG ; Zunpeng LIU ; Huichao DENG ; Yanxia YE ; Yu WANG ; Jian LI ; Jie QIAO ; Jing QU ; Weiqi ZHANG ; Guang-Hui LIU
Protein & Cell 2016;7(7):478-488
Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, telomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRN-deficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.
Animals
;
Ascorbic Acid
;
pharmacology
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line
;
Cellular Senescence
;
drug effects
;
DNA Damage
;
DNA Repair
;
drug effects
;
DNA Replication
;
drug effects
;
Disease Models, Animal
;
Heterochromatin
;
metabolism
;
pathology
;
Humans
;
Mesenchymal Stem Cells
;
metabolism
;
pathology
;
Mice
;
Nuclear Lamina
;
metabolism
;
pathology
;
Reactive Oxygen Species
;
metabolism
;
Telomere Homeostasis
;
drug effects
;
Werner Syndrome
;
drug therapy
;
genetics
;
metabolism
6.Estrogen deficiency reversibly induces telomere shortening in mouse granulosa cells and ovarian aging in vivo.
Sharyn BAYNE ; He LI ; Margaret E E JONES ; Alex R PINTO ; Michelle VAN SINDEREN ; Ann DRUMMOND ; Evan R SIMPSON ; Jun-Ping LIU
Protein & Cell 2011;2(4):333-346
Estrogen is implicated as playing an important role in aging and tumorigenesis of estrogen responsive tissues; however the mechanisms underlying the mitogenic actions of estrogen are not fully understood. Here we report that estrogen deficiency in mice caused by targeted disruption of the aromatase gene results in a significant inhibition of telomerase maintenance of telomeres in mouse ovaries in a tissue-specific manner. The inhibition entails a significant shortening of telomeres and compromised proliferation in the follicular granulosa cell compartment of ovary. Gene expression analysis showed decreased levels of proto-oncogene c-Myc and the telomerase catalytic subunit, telomerase reverse transcriptase (TERT), in response to estrogen deficiency. Estrogen replacement therapy led to increases in TERT gene expression, telomerase activity, telomere length and ovarian tissue growth, thereby reinstating ovary development to normal in four weeks. Our data demonstrate for the first time that telomere maintenance is the primary mechanism mediating the mitogenic effect of estrogen on ovarian granulosa cell proliferation by upregulating the genes of c-Myc and TERT in vivo. Estrogen deficiency or over-activity may cause ovarian tissue aging or tumorigenesis, respectively, through estrogen regulation of telomere remodeling.
46, XX Disorders of Sex Development
;
drug therapy
;
genetics
;
metabolism
;
Aging
;
genetics
;
metabolism
;
Animals
;
Aromatase
;
deficiency
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Estrogen Replacement Therapy
;
Estrogens
;
deficiency
;
pharmacology
;
Female
;
Gene Expression
;
Genes, myc
;
genetics
;
Granulosa Cells
;
drug effects
;
metabolism
;
pathology
;
Gynecomastia
;
drug therapy
;
genetics
;
metabolism
;
Humans
;
Infertility, Male
;
drug therapy
;
genetics
;
metabolism
;
Metabolism, Inborn Errors
;
drug therapy
;
genetics
;
metabolism
;
Mice
;
Mice, Knockout
;
Telomerase
;
genetics
;
metabolism
;
Telomere
;
chemistry
;
metabolism
;
pathology