1.Research Advances in Structural Characteristics,Identification Methods,and Functions of Telocytes.
Teng LI ; Ying XU ; Qiu-Yan JIANG ; Yu-Cheng ZHAO ; Zhi-Zheng WU ; Hu TIAN
Acta Academiae Medicinae Sinicae 2020;42(4):552-558
Telocytes are novel interstitial cells with a specific structure:the body has an elliptical shape or a triangle shape,with slender and thin protrusions that connect with other cells to form a complex 3D network.This article summarizes the structural characteristics and identification Methods of Telocytes and demonstrates their potential functions as a new target for disease prevention and treatment.
Telocytes
2.Tumor-associated telocytes.
Chinese Medical Journal 2024;137(4):490-492
3.Cyclophosphamide-induced HCN1 channel upregulation in interstitial Cajal-like cells leads to bladder hyperactivity in mice.
Qian LIU ; Zhou LONG ; Xingyou DONG ; Teng ZHANG ; Jiang ZHAO ; Bishao SUN ; Jingzhen ZHU ; Jia LI ; Qingqing WANG ; Zhenxing YANG ; Xiaoyan HU ; Longkun LI
Experimental & Molecular Medicine 2017;49(4):e319-
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are confirmed to be expressed in bladder interstitial Cajal-like cells (ICC-LCs), but little is known about their possible role in cystitis-associated bladder dysfunction. The present study aimed to determine the functional role of HCN channels in regulating bladder function under inflammatory conditions. Sixty female wild-type C57BL/6J mice and sixty female HCN1-knockout mice were randomly assigned to experimental and control groups, respectively. Cyclophosphamide (CYP)-induced cystitis models were successfully established in these mice. CYP treatment significantly enhanced HCN channel protein expression and I(h) density and significantly altered bladder HCN1 channel regulatory proteins. Carbachol (CCH) and forskolin (FSK) exerted significant effects on bladder ICC-LC [Ca²⁺]i in CYP-treated wild-type (WT) mice, and HCN1 channel ablation significantly decreased the effects of CCH and FSK on bladder ICC-LC [Ca²⁺]i in both naive and CYP-treated mice. CYP treatment significantly potentiated the spontaneous contractions and CCH (0.001-10 µM)-induced phasic contractions of detrusor strips, and HCN1 channel deletion significantly abated such effects. Finally, we demonstrated that the development of CYP-induced bladder overactivity was reversed in HCN1 -/- mice. Taken together, our results suggest that CYP-induced enhancements of HCN1 channel expression and function in bladder ICC-LCs are essential for cystitis-associated bladder hyperactivity development, indicating that the HCN1 channel may be a novel therapeutic target for managing bladder hyperactivity.
Animals
;
Carbachol
;
Colforsin
;
Cyclophosphamide
;
Cystitis
;
Female
;
Humans
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels*
;
Mice*
;
Telocytes*
;
Up-Regulation*
;
Urinary Bladder*
4.Distribution of Telocytes in Vital Organs of ApoE Mice.
Ying XU ; Hu TIAN ; Jian YU ; Jia Lin CHENG ; Yu Cheng ZHAO
Acta Academiae Medicinae Sinicae 2018;40(6):778-784
Objective To identify and verify the distribution of Telocytes derived from heterogeneous interstitial cells in the vital organs of ApoE mice.Methods Heart,kidney,and liver tissues were harvested from ApoE adult mice. Immunohistochemical assays were performed by using different immunobiological markers.Results Telocytes were found in these vital organs. The expressions of immunobiological markers differed among different organs. CD34,CD117,and CD28 were positively expressed in Telocytes in cardiac tissue;CD117 and plateled-derived growth factor-Α were negatively expressed in Telocytes in renal tissue;and CD117 and plateled-derived growth factor receptor-Α had negative expression in Telocytes in hepatic tissue. Furthermore,the distribution of Telocytes also differed in the same organ.Conclusions Telocytes exist in the vital organs of ApoE mice,as demonstrated by immunohistochemisty assay. The expressions of immunobiological markers differ among Telocytes in different organs.
Animals
;
Antigens, CD34
;
metabolism
;
CD28 Antigens
;
metabolism
;
Kidney
;
cytology
;
Liver
;
cytology
;
Mice
;
Mice, Knockout, ApoE
;
Myocardium
;
cytology
;
Proto-Oncogene Proteins c-kit
;
metabolism
;
Telocytes
;
cytology