1.The role of PI3K/AKT pathway and its therapeutic possibility in Alzheimer's disease.
Hanyang Medical Reviews 2017;37(1):18-24
Alzheimer's disease (AD) is the most common form of dementia. Although uncountable clinical trials have been done to develop the treatment of AD, there are a couple of drugs that can be used only for symptomatic treatment. Therefore, many studies based on the amyloid cascade hypothesis and the tauopathy hypothesis are still ongoing. After the failure of numerous huge Phase III clinical trials, arguments on those hypotheses have arisen and efforts to establish other possible therapeutic strategies based on diverse plausible mechanisms associated with AD have been done as well. One of the new therapeutic targets for AD is the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. In this review, questions on the two hypotheses, the definition of the PI3K/AKT pathway, the relationship between the pathway and AD, and the possibility of the modulation of the pathway as a new therapeutic strategy for AD will be discussed briefly.
Alzheimer Disease*
;
Amyloid
;
Dementia
;
Phosphatidylinositol 3-Kinase
;
Tauopathies
2.Longitudinal Clinical Changes of Non-Fluent/Agrammatic Primary Progressive Aphasia as Tau Spectrum Disorder: A Case Report.
Jin Soo KIM ; Jae Won JANG ; Seong Heon KIM ; Min Jeong WANG ; Young Ho PARK ; Sangyun KIM
Dementia and Neurocognitive Disorders 2015;14(2):87-93
BACKGROUND: Tauopathies are a group of diseases caused by the accumulation of hyperphosphorylated tau protein in the central nervous system. Previous studies have revealed that there is considerable overlap in clinical, pathological, and genetic features among different taupathies. CASE REPORT: We report a patient with non-fluent/agrammatic primary progressive aphasia at the initial assessment. Over time, other symptoms belonging to corticobasal degeneration and progressive supranuclear palsy appeared in this patient. CONCLUSIONS: Clinical overlapping features in these disorders may represent different phenotypes of a single disease process.
Aphasia, Primary Progressive*
;
Central Nervous System
;
Humans
;
Phenotype
;
Supranuclear Palsy, Progressive
;
tau Proteins
;
Tauopathies
3.Regulation of Diabetes: a Therapeutic Strategy for Alzheimer's Disease?
Kee Chan AHN ; Cameron R LEARMAN ; Glen B BAKER ; Charles L WEAVER ; Phil Sang CHUNG ; Hyung Gun KIM ; Mee Sook SONG
Journal of Korean Medical Science 2019;34(46):e297-
Accumulated evidence suggests that sporadic cases of Alzheimer's disease (AD) make up more than 95% of total AD patients, and diabetes has been implicated as a strong risk factor for the development of AD. Diabetes shares pathological features of AD, such as impaired insulin signaling, increased oxidative stress, increased amyloid-beta (Aβ) production, tauopathy and cerebrovascular complication. Due to shared pathologies between the two diseases, anti-diabetic drugs may be a suitable therapeutic option for AD treatment. In this article, we will discuss the well-known pathologies of AD, including Aβ plaques and tau tangles, as well as other mechanisms shared in AD and diabetes including reactive glia and the breakdown of blood brain barrier in order to evaluate the presence of any potential, indirect or direct links of pre-diabetic conditions to AD pathology. In addition, clinical evidence of high incidence of diabetic patients to the development of AD are described together with application of anti-diabetic medications to AD patients.
Alzheimer Disease
;
Blood-Brain Barrier
;
Encephalitis
;
Humans
;
Incidence
;
Insulin
;
Neuroglia
;
Oxidative Stress
;
Pathology
;
Risk Factors
;
Tauopathies
4.Primary Age-Related Tauopathy: An Elderly Brain Pathology Frequently Encountered during Autopsy
Daru KIM ; Hyung Seok KIM ; Seong Min CHOI ; Byeong C KIM ; Min Cheol LEE ; Kyung Hwa LEE ; Jae Hyuk LEE
Journal of Pathology and Translational Medicine 2019;53(3):159-163
Due to the progressive aging of Korean society and the introduction of brain banks to the Korean medical system, the possibility that pathologists will have access to healthy elderly brains has increased. The histopathological analysis of an elderly brain from a subject with relatively well-preserved cognition is quite different from that of a brain from a demented subject. Additionally, the histology of elderly brains differs from that of young brains. This brief review discusses primary age-related tauopathy; this term was coined to describe elderly brains with Alzheimer’s diseasetype neurofibrillary tangles mainly confined to medial temporal structures, and no β-amyloid pathology.
Aged
;
Aging
;
Amyloid beta-Peptides
;
Autopsy
;
Brain
;
Cognition
;
Dementia
;
Humans
;
Neurofibrillary Tangles
;
Numismatics
;
Pathology
;
Tauopathies
5.Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models.
Eugene HUH ; Hyo Geun KIM ; Hanbyeol PARK ; Min Seo KANG ; Bongyong LEE ; Myung Sook OH
Biomolecules & Therapeutics 2014;22(3):176-183
Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Abeta) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Abeta-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Abeta-induced neurotoxicity. In mice with Abeta-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Abeta-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 microg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD.
Acetylcholinesterase
;
Alzheimer Disease
;
Amyloid
;
Animals
;
Calcium
;
Cholinergic Antagonists
;
Dementia
;
Herbal Medicine
;
Hippocampus
;
Homeostasis
;
Houttuynia*
;
Inhibitory Concentration 50
;
Memory
;
Mice
;
Neurons
;
Phosphorylation
;
Rats
;
Tauopathies
;
Water
6.Clinical Approach to Progressive Supranuclear Palsy.
Journal of Movement Disorders 2016;9(1):3-13
Sixty years ago, Steele, Richardson and Olszewski designated progressive supranuclear palsy (PSP) as a new clinicopathological entity in their seminal paper. Since then, in addition to the classic Richardson's syndrome (RS), different clinical phenotypic presentations have been linked with this four-repeat tauopathy. The clinical heterogeneity is associated with variability of regional distribution and severity of abnormal tau accumulation and neuronal loss. In PSP subtypes, the presence of certain clinical pointers may be useful for antemortem prediction of the underlying PSP-tau pathology. Midbrain atrophy on conventional MRI correlates with the clinical phenotype of RS but is not predictive of PSP pathology. Cerebrospinal fluid biomarkers and tau ligand positron emission tomography are promising biomarkers of PSP. A multidisciplinary approach to meet the patients' complex needs is the current core treatment strategy for this devastating disorder.
Atrophy
;
Biomarkers
;
Cerebrospinal Fluid
;
Magnetic Resonance Imaging
;
Mesencephalon
;
Neurons
;
Pathology
;
Phenotype
;
Population Characteristics
;
Positron-Emission Tomography
;
Steel
;
Supranuclear Palsy, Progressive*
;
Tauopathies
7.Transcriptome analyses of chronic traumatic encephalopathy show alterations in protein phosphatase expression associated with tauopathy.
Jeong Sun SEO ; Seungbok LEE ; Jong Yeon SHIN ; Yu Jin HWANG ; Hyesun CHO ; Seong Keun YOO ; Yunha KIM ; Sungsu LIM ; Yun Kyung KIM ; Eun Mi HWANG ; Su Hyun KIM ; Chong Hyun KIM ; Seung Jae HYEON ; Ji Young YUN ; Jihye KIM ; Yona KIM ; Victor E ALVAREZ ; Thor D STEIN ; Junghee LEE ; Dong Jin KIM ; Jong Il KIM ; Neil W KOWALL ; Hoon RYU ; Ann C MCKEE
Experimental & Molecular Medicine 2017;49(5):e333-
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder that is associated with repetitive head injury and has distinctive neuropathological features that differentiate this disease from other neurodegenerative diseases. Intraneuronal tau aggregates, although they occur in different patterns, are diagnostic neuropathological features of CTE, but the precise mechanism of tauopathy is not known in CTE. We performed whole RNA sequencing analysis of post-mortem brain tissue from patients with CTE and compared the results to normal controls to determine the transcriptome signature changes associated with CTE. The results showed that the genes related to the MAP kinase and calcium-signaling pathways were significantly downregulated in CTE. The altered expression of protein phosphatases (PPs) in these networks further suggested that the tauopathy observed in CTE involves common pathological mechanisms similar to Alzheimer's disease (AD). Using cell lines and animal models, we also showed that reduced PPP3CA/PP2B phosphatase activity is directly associated with increases in phosphorylated (p)-tau proteins. These findings provide important insights into PP-dependent neurodegeneration and may lead to novel therapeutic approaches to reduce the tauopathy associated with CTE.
Alzheimer Disease
;
Brain
;
Brain Injury, Chronic*
;
Cell Line
;
Craniocerebral Trauma
;
Gene Expression Profiling*
;
Humans
;
Models, Animal
;
Neurodegenerative Diseases
;
Phosphoprotein Phosphatases
;
Phosphotransferases
;
Sequence Analysis, RNA
;
Tauopathies*
;
Transcriptome*
8.Clinical and Pathological Characteristics of Frontotemporal Lobar Degeneration(FTLD) and Molecular Genetics of Tau Protein.
Journal of the Korean Society of Biological Psychiatry 2003;10(2):97-106
Criticisms about amyloid cascade hypothesis of Alzheimer's disease(AD) are based on the findings, first, that the degree of dementia does not correlate with the number of plaques, and second, that the neurofibrillary tangle formation seems to predate plaque formation. In addition, neurofibrillary tangle counts correlate well with the degree of cognitive impairment. These findings suggest the independent importance of tau abnormality in AD research which is involved in the neurofibrillary tangle formation. Recently, tau pathology without amyloid deposits and mutations in tau protein gene were reported to be the major pathogenic mechanism in Pick's disease, progressive supranuclear palsy, corticobasal degeneration and FTDP-17(frontotemporal dementia and parkinsonism linked with chromosome 17). These data suggest that understanding the causes and consequences of tau dysfunction might give new clinical and therapeutic solutions to many known tauopathies.
Amyloid
;
Dementia
;
Frontotemporal Dementia
;
Frontotemporal Lobar Degeneration
;
Molecular Biology*
;
Neurofibrillary Tangles
;
Parkinsonian Disorders
;
Pathology
;
Pick Disease of the Brain
;
Plaque, Amyloid
;
Prednisolone
;
Supranuclear Palsy, Progressive
;
tau Proteins*
;
Tauopathies
9.¹⁸F-THK5351 PET Imaging in the Behavioral Variant of Frontotemporal Dementia.
Gijin NAM ; Hye Jin JEONG ; Jae Myeong KANG ; Sang Yoon LEE ; Seongho SEO ; Ha Eun SEO ; Kee Hyung PARK ; Byeong Kil YEON ; Tatsuo IDO ; Dong Jin SHIN ; Young NOH
Dementia and Neurocognitive Disorders 2018;17(4):163-173
BACKGROUND AND PURPOSE: Behavioral variant frontotemporal dementia (bvFTD) is a subtype of frontotemporal dementia, which has clinical symptoms of progressive personality and behavioral changes with deterioration of social cognition and executive functions. The pathology of bvFTD is known to be tauopathy or TDP-43 equally. We analyzed the 18F-THK5351 positron emission tomography (PET) scans, which were recently developed tau PET, in patients with clinically-diagnosed bvFTD. METHODS: Forty-eight participants, including participants with behavioral variant frontotemporal dementia (bvFTD, n=3), Alzheimer's disease (AD, n=21) and normal cognition (NC, n=24) who completed 3T magnetic resonance images, 18F-THK5351 PET scans, and detailed neuropsychological tests were included in the study. Voxel-wise statistical analysis and region of interest (ROI)-based analyses were performed to evaluate the retention of THK in bvFTD patients. RESULTS: In the voxel-based and ROI-based analyses, patients with bvFTD showed greater THK retention in the prefrontal, medial frontal, orbitofrontal, anterior cingulate, insula, anterior inferior temporal and striatum regions compared to NC participants. Left-right asymmetry was noted in the bvFTD patients. A patient with extrapyramidal symptoms showed much greater THK retention in the brainstem. CONCLUSIONS: The distribution of THK retention in the bvFTD patients was mainly in the frontal, insula, anterior temporal, and striatum regions which are known to be the brain regions corresponding to the clinical symptoms of bvFTD. Our study suggests that 18F-THK5351 PET imaging could be a supportive tool for diagnosis of bvFTD.
Alzheimer Disease
;
Brain
;
Brain Stem
;
Cognition
;
Diagnosis
;
Executive Function
;
Frontotemporal Dementia*
;
Gyrus Cinguli
;
Humans
;
Neuropsychological Tests
;
Pathology
;
Positron-Emission Tomography
;
Tauopathies
10.Gait Ignition Failure in JNPL3 Human Tau-mutant Mice
HoChung JANG ; Jung Hwa RYU ; Kyung Min SHIN ; Na Young SEO ; Gyu Hyun KIM ; Yang Hoon HUH ; Ae Nim PAE ; Kea Joo LEE
Experimental Neurobiology 2019;28(3):404-413
Cognitive impairments and motor dysfunction are commonly observed behavioral phenotypes in genetic animal models of neurodegenerative diseases. JNPL3 transgenic mice expressing human P301L-mutant tau display motor disturbances with age- and gene dose-dependent development of neurofibrillary tangles, suggesting that tau pathology causes neurodegeneration associated with motor behavioral abnormalities. Although gait ignition failure (GIF), a syndrome marked by difficulty in initiating locomotion, has been described in patients with certain forms of tauopathies, transgenic mouse models mirroring human GIF syndrome have yet to be reported. Using the open field and balance beam tests, here we discovered that JNPL3 homozygous mice exhibit a marked delay of movement initiation. The elevated plus maze excluded the possibility that hesitation to start in JNPL3 mice was caused by enhanced levels of anxiety. Considering the normal gait ignition in rTg4510 mice expressing the same mutant tau in the forebrain, GIF in JNPL3 mice seems to arise from abnormal tau deposition in the hindbrain areas involved in locomotor initiation. Accordingly, immunohistochemistry revealed highly phosphorylated paired helical filament tau in JNPL3 brainstem areas associated with gait initiation. Together, these findings demonstrate a novel behavioral phenotype of impaired gait initiation in JNPL3 mice and underscore the value of this mouse line as a tool to study the neural mechanisms and potential treatments for human GIF syndrome.
Animals
;
Anxiety
;
Brain Stem
;
Cognition Disorders
;
Gait
;
Humans
;
Immunohistochemistry
;
Locomotion
;
Mice
;
Mice, Transgenic
;
Models, Animal
;
Neurodegenerative Diseases
;
Neurofibrillary Tangles
;
Pathology
;
Phenotype
;
Prosencephalon
;
Rhombencephalon
;
Tauopathies