1.Identification of novel biomarkers for varicocele using iTRAQ LC-MS/MS technology.
Xianfeng LU ; Na LI ; Lufang LI ; Yongai WU ; Xuefeng LYU ; Yingli CAO ; Jianrong LIU ; Qin QIN
Chinese Medical Journal 2024;137(3):371-372
2.Isolation and identification of a polyester-polyurethane degrading bacterium Bacillus altitudinis YX8-1.
Caiting ZENG ; Junbin JI ; Fanghui DING ; Zhoukun LI ; Hui CAO ; Zhongli CUI ; Xin YAN
Chinese Journal of Biotechnology 2023;39(5):1976-1986
Although polyurethane (PUR) plastics play important roles in daily life, its wastes bring serious environmental pollutions. Biological (enzymatic) degradation is considered as an environmentally friendly and low-cost method for PUR waste recycling, in which the efficient PUR-degrading strains or enzymes are crucial. In this work, a polyester PUR-degrading strain YX8-1 was isolated from the surface of PUR waste collected from a landfill. Based on colony morphology and micromorphology observation, phylogenetic analysis of 16S rDNA and gyrA gene, as well as genome sequence comparison, strain YX8-1 was identified as Bacillus altitudinis. The results of high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) showed that strain YX8-1 was able to depolymerize self-synthesized polyester PUR oligomer (PBA-PU) to produce a monomeric compound 4, 4'-methylene diphenylamine. Furthermore, strain YX8-1 was able to degrade 32% of the commercialized polyester PUR sponges within 30 days. This study thus provides a strain capable of biodegradation of PUR waste, which may facilitate the mining of related degrading enzymes.
Polyurethanes/chemistry*
;
Polyesters/chemistry*
;
Chromatography, Liquid
;
Phylogeny
;
Tandem Mass Spectrometry
;
Bacteria/metabolism*
;
Biodegradation, Environmental
3.Analysis of Forty-Two Psychoactive Substances in a Single Hair by Micro-Segmental Technique.
Jiao-Jiao JI ; Duo-Qi XU ; Ping XIANG ; Hui YAN ; Min SHEN
Journal of Forensic Medicine 2023;39(2):151-160
OBJECTIVES:
To establish an LC-MS/MS method based on single hair micro-segmental technique, and verify the detection of 42 psychoactive substances in 0.4 mm hair segments.
METHODS:
Each piece of single hair was cut into 0.4 mm segments and extracted by sonication and the segments were immersed in dithiothreitol-containing extraction medium. Mobile phase A was the aqueous solution containing 20 mmol/L ammonium acetate, 0.1% formic acid, and 5% acetonitrile. Mobile phase B was acetonitrile. An electrospray ionization source in positive ion mode was used for data acquisition in multiple reaction monitoring (MRM) mode.
RESULTS:
The 42 psychoactive substances in hair had a good linear relationship within their respective linear ranges (r>0.99), the limits of detection were 0.2-10 pg/mm, the limits of quantification were 0.5-20 pg/mm, the intra-day and inter-day precisions were 1.5%-12.7%, the intra-day and inter-day accuracies were 86.5%-109.2%, the recovery rates were 68.1%-98.2%, and the matrix effects were 71.3%-111.7%. The method was applied to hair samples collected from one volunteer at 28 d after a single dose of zolpidem, with zolpidem detected in 5 hairs was 1.08-1.60 cm near the root tip, and the concentration range was 0.62-20.5 pg/mm.
CONCLUSIONS
The micro-segmental technique of single hair analysis can be applied to the investigation of drug-facilitated sexual assault cases.
Humans
;
Chromatography, Liquid/methods*
;
Zolpidem
;
Tandem Mass Spectrometry/methods*
;
Hair
;
Acetonitriles
;
Chromatography, High Pressure Liquid
4.Effects of plateau hypoxia on population pharmacokinetics and pharmacodynamics of metformin in patients with Type 2 diabetes.
Yike SHEN ; Xiaohong LUO ; Ningning QIN ; Lin HU ; Lin LUO ; Zhen WANG ; Yuemei SUN ; Rong WANG ; Wenbin LI
Journal of Central South University(Medical Sciences) 2023;48(4):481-490
OBJECTIVES:
Metformin is the basic drug for treating diabetes, and the plateau hypoxic environment is an important factor affecting the pharmacokinetics of metformin, but there have been no reports of metformin pharmacokinetic parameters in patients with diabetes mellitus type 2 (T2DM) in the high-altitude hypoxic environment. This study aims to investigate the effect of the hypoxic environment on the pharmacokinetics and assess the efficacy and safety of metformin administration in patients with Type 2 diabetes mellitus (T2DM).
METHODS:
A total of 85 patients with T2DM taking metformin tablets in the plateau group (n=32, altitude: 1 500 m) and control group (n=53, altitude: 3 800 m) were enrolled according to the inclusion and exclusion criteria, and 172 blood samples were collected in the plateau group and the control Group. A ultra-performance liquid chromatography/tandem mass spectrometry (UFLC-MS/MS) method was established to determine the blood concentration of metformin, and Phoenix NLME software was used to establish a model of pharmacokinetics of metformin in the Chinese T2DM population. The efficacy and serious adverse effects of metformin were compared between the 2 groups.
RESULTS:
The population pharmacokinetic modeling results showed that plateau hypoxia and age were the main covariates for model building, and the pharmacokinetic parameters were significantly different between the plateau and control groups (all P<0.05), including distribution volume (V), clearance (CL), elimination rate constant (Ke), half-life(T1/2), area under the curve (AUC), time to reach maximum concentration (Tmax). Compared with the control group, AUC was increased by 23.5%, Tmax and T1/2 were prolonged by 35.8% and 11.7%, respectively, and CL was decreased by 31.9% in the plateau group. The pharmacodynamic results showed that the hypoglycaemic effect of T2DM patients in the plateau group was similar to that in the control group, the concentration of lactic acid was higher in the plateau group than that in the control group, and the risk of lactic acidosis was increased after taking metformin in the plateau population.
CONCLUSIONS
Metformin metabolism is slowed down in T2DM patients in the hypoxic environment of the plateau; the glucose-lowering effect of the plateau is similar, and the attainment rate is low, the possibility of having serious adverse effects of lactic acidosis is higher in T2DM patients on the plateau than on the control one. It is probably suggested that patients with T2DM on the plateau can achieve glucose lowering effect by extending the interval between medication doses and enhancing medication education to improve patient compliance.
Humans
;
Diabetes Mellitus, Type 2/drug therapy*
;
Metformin/therapeutic use*
;
Acidosis, Lactic
;
Tandem Mass Spectrometry
;
Hypoxia
;
Glucose
5.Deciphering chemical and metabolite profiling of Chang-Kang-Fang by UPLC-Q-TOF-MS/MS and its potential active components identification.
Fengge YANG ; Sihao ZHANG ; Danmei TIAN ; Guirong ZHOU ; Xiyang TANG ; Xinglong MIAO ; Yi HE ; Xinsheng YAO ; Jinshan TANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):459-480
Chang-Kang-Fang (CKF) formula, a Traditional Chinese Medicine (TCM) prescription, has been widely used for the treatment of irritable bowel syndrome (IBS). However, its potential material basis and underlying mechanism remain elusive. Therefore, this study employed an integrated approach that combined ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) with network pharmacology to systematically characterize the phytochemical components and metabolites of CKF, as well as elucidating its underlying mechanism. Through this comprehensive analysis, a total of 150 components were identified or tentatively characterized within the CKF formula. Notably, six N-acetyldopamine oligomers from CicadaePeriostracum and eight resin glycosides from Cuscutae Semen were characterized in this formula for the first time. Meanwhile, 149 xenobiotics (58 prototypes and 91 metabolites) were detected in plasma, urine, feces, brain, and intestinal contents, and the in vivo metabolic pathways of resin glycosides were elaborated for the first time. Furthermore, network pharmacology and molecular docking analyses revealed that alkaloids, flavonoids, chromones, monoterpenes, N-acetyldopamine dimers, p-hydroxycinnamic acid, and Cus-3/isomer might be responsible for the beneficial effects of CKF in treating IBS, and CASP8, MARK14, PIK3C, PIK3R1, TLR4, and TNF may be its potential targets. These discoveries offer a comprehensive understanding of the potential material basis and clarify the underlying mechanism of the CKF formula in treating IBS, facilitating the broader application of CKF in the field of medicine.
Humans
;
Tandem Mass Spectrometry/methods*
;
Irritable Bowel Syndrome/drug therapy*
;
Molecular Docking Simulation
;
Drugs, Chinese Herbal/chemistry*
;
Glycosides
;
Chromatography, High Pressure Liquid/methods*
6.Eucommia lignans alleviate the progression of diabetic nephropathy through mediating the AR/Nrf2/HO-1/AMPK axis in vivo and in vitro.
Qi HUANG ; Yinfan ZHANG ; Yueping JIANG ; Ling HUANG ; Qiong LIU ; Dongsheng OUYANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):516-526
Lignans derived from Eucommia ulmoides Oliver (Eucommia lignans) inhibit the progression of inflammatory diseases, while their effect on the progression of diabetic nephropathy (DN) remained unclear. This work was designed to assess the function of Eucommia lignans in DN. The major constituents of Eucommia lignans were analyzed by UPLC-Q-TOF-MS/MS. The binding between Eucommia lignans and aldose reductase (AR) was predicted by molecular docking. Eucommia lignans (200, 100, and 50 mg·kg-1) were used in model animals to evaluate their renal function changes. Rat glomerular mesangial cells (HBZY-1) were transfected with sh-AR, sh-AMPK, and oe-AR in the presence of high glucose (HG) or HG combined with Eucommia lignans to evaluate whether Eucommia lignans affected HG-induced cell injury and mitochondrial dysfunction through the AR/Nrf2/HO-1/AMPK axis. Eucommia lignans significantly attenuated the progression of DN in vivo. Eucommia lignans notably reversed HG-induced upregulation of inflammatory cytokines and mitochondrial injury, while downregulating the levels of Cyto c, caspase 9, AR, and NOX4 in HBZY-1 cells. In contrast, HG-induced downregulation of Nrf2, HO-1 and p-AMPKα levels were abolished by Eucommia lignans. Meanwhile, knockdown of AR exerted similar therapeutic effect of Eucommia lignans on DN progression, and AR overexpression reversed the effect of Eucommia lignans. Eucommia lignans alleviated renal injury through the AR/Nrf2/HO-1/AMPK axis. Thus, these findings might provide evidence for the use of Eucommia lignans in treating DN.
Animals
;
Rats
;
AMP-Activated Protein Kinases/genetics*
;
Diabetes Mellitus
;
Diabetic Nephropathies/prevention & control*
;
Eucommiaceae/metabolism*
;
Lignans/therapeutic use*
;
Molecular Docking Simulation
;
NF-E2-Related Factor 2/metabolism*
;
Tandem Mass Spectrometry
7.Detection of Carbamazepine and Its Metabolites in Blood Samples by LC-MS/MS.
Hai-Yan CUI ; Chen-Xi LÜ ; Yan-Hua SHI ; Ni YUAN ; Jia-Hao LIANG ; Quan AN ; Zhong-Yuan GUO ; Ke-Ming YUN
Journal of Forensic Medicine 2023;39(1):34-39
OBJECTIVES:
To establish a method for the detection of carbamazepine and its metabolites 10,11-dihydro-10,11-epoxycarbamazepine and 10,11-dihydro-10-hydroxycarbamazepine in blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS).
METHODS:
The blood samples were treated with 1-butyl-3-methylimidazolium hexafluorophosphate as an extraction solvent. The samples were extracted by ultrasound-assisted extraction and separated by ZORBAX Eclipse Plus C18, 95Å column. The mobile phase A aqueous solution containing 0.1% formic acid and 10 mmol/L ammonium acetate, and mobile phase B mixed organic solvent containing acetonitrile/methanol (Vacetonitrile∶Vmethanol=2∶3) were used for gradient elution at the flow rate of 1.00 mL/min. An electrospray ion source in positive mode was used for detection in the multiple reaction monitoring.
RESULTS:
The linearities of carbamazepine and its metabolites 10,11-dihydro-10,11-epoxycarbamazepine and 10,11-dihydro-10-hydroxycarbamazepine in blood samples were good within the corresponding range, with correlation coefficients (r) greater than 0.995 6. The limits of detection were 3.00, 0.40 and 1.30 ng/mL, respectively. The limit of quantitation were 8.00, 1.00 and 5.00 ng/mL, respectively. The extraction recoveries ranged from 76.00% to 106.44%. The relative standard deviations of the intra-day and inter-day precisions were less than 16%. Carbamazepine and its main metabolite 10,11-dihydro-10,11-epoxycarbamazepine were detected in blood samples of death cases with a mass concentration of 2.71 μg/mL and 252.14 ng/mL, respectively.
CONCLUSIONS
This method has high sensitivity and good selectivity, which is suitable for the detection of carbamazepine and its metabolites in blood samples, and can be used for carbamazepine-related forensic identifications.
Chromatography, Liquid/methods*
;
Tandem Mass Spectrometry
;
Methanol
;
Carbamazepine/analysis*
;
Benzodiazepines/analysis*
;
Solvents
;
Chromatography, High Pressure Liquid
;
Solid Phase Extraction
8.Plasma Acylcarnitine and Urinary Organic Acid Profiling for the diagnosis of Fatty Acid Oxidation Disorder and Organic Acidurias using tandem mass spectrometry (MS/MS) and gas chromatography tandem with mass spectrometry (GC-MS): a retrospective study.
Sheryl D. Apacible ; Cristine P. Lopez ; BeaDavee Marie H. Somozo ; Dahlia C. Apodaca
Philippine Journal of Health Research and Development 2023;27(2):1-
INTRODUCTION:
Acylcarnitines in plasma and urinary organic acids are essential diagnostic markers for some Inborn Errors of Metabolism (IEM) such as fatty acid oxidation disorders, and disorders related to organic acids metabolism. By virtue of R. A. 9288, Filipino newborn babies are screened for inherited metabolic disorders via the analysis of dried blood spots (DBS) using MS/MS.
OBJECTIVE:
This study aimed to establish the plasma acylcarnitine (PLAC) and urinary organic acid (UOA) profiles of Filipino newborn babies screened at high risk for IEMS using MS/MS and single quadrupole GC-MS analytical techniques. Further, this study describes the process of determining the true positive cases of fatty acid oxidation disorders and some organic acidurias among screened Filipino newborn babies using different sample types such as plasma and urine via flow injection analysis with tandem mass spectrometry (FIA-MS/MS) and another technique such as gas chromatography in tandem with mass spectrometry (GC-MS).
METHODOLOGY:
Plasma acylcarnitine and urinary organic acid analyses were performed using Waters® MS/MS and Agilent® single quadrupole GC-MS, respectively. Results obtained from PLAC and UOA databases and IEM registry of the Biochemical Genetics Laboratory (BGL) covering the period 2015-2021 were utilized to account for the number of confirmed cases out of the total number screened positive for IEMs. Descriptive statistics was also used to evaluate the detection rates of FAODs and Organic Acidurias in Filipino newborn babies screened to be high risk.
RESULTS:
Plasma acylcarnitine analysis was introduced by BGL only in 2015. Data from 2015-2021, indicated 176 true positives out of 1642 babies screened at high risk for FAODs and organic acidurias. The use of plasma and urine samples for measurements in MS/MS and GC-MS yielded a detection rate of 10.7% with 104 Filipino newborn babies afflicted with fatty acid oxidation disorders (FAOD) while 72 were found to be confirmed cases of organic acidurias. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency was reported to be the most common FAOD with 67 cases. Organic acidurias such as glutaric aciduria type 1 and 3-Methylcrotonyl-CoA carboxylase (3-MCC) deficiency were found to be common with 34 and 26 true positives, respectively.
CONCLUSION
The plasma acylcarnitine and urinary organic acid profiles of Filipino newborn babies with fatty acid oxidation disorders and organic acidurias obtained via MS/MS and GC/MS, respectively, were presented in this paper. This study emphasizes the importance of conducting confirmatory testing to establish the true positives from among those Filipino newborns flagged to be at high risk for FAODs or organic aciduria. The confirmatory tests are based on the use of different samples such as urine and plasma in order to detect and quantify biomarkers for FAODs and organic acidurias using two different analytical techniques such as MS/MS and GC-MS. This study warrants further studies directed towards the validation of analytical methodologies for targeted measurements of biomarkers of IEMS in urine and plasma of newborn babies to increase the efficiency of establishing true positives and to determine the efficiency of administration of interventions on Filipino children with genetic disabilities, that is, for monitoring purposes.
plasma
;
inborn error of metabolism
;
tandem mass spectrometry
;
GC-MS
9.Similarities and differences of myocardial metabolic characteristics between HFpEF and HFrEF mice based on LC-MS/MS metabolomics.
Zhan Yi ZHANG ; Xue Ying FENG ; Zi Hao WANG ; Yu Zhi HUANG ; Wen Bo YANG ; Wen Jiao ZHANG ; Juan ZHOU ; Zu Yi YUAN
Chinese Journal of Cardiology 2023;51(7):722-730
Objective: To reveal the similarities and differences in myocardial metabolic characteristics between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) mice using metabolomics. Methods: The experimental mice were divided into 4 groups, including control, HFpEF, sham and HFrEF groups (10 mice in each group). High fat diet and Nω-nitroarginine methyl ester hydrochloride (L-NAME) were applied to construct a"two-hit"HFpEF mouse model. Transverse aortic constriction (TAC) surgery was used to construct the HFrEF mouse model. The differential expression of metabolites in the myocardium of HFpEF and HFrEF mice was detected by untargeted metabolomics (UHPLC-QE-MS). Variable importance in projection>1 and P<0.05 were used as criteria to screen and classify the differentially expressed metabolites between the mice models. KEGG functional enrichment and pathway impact analysis demonstrated significantly altered metabolic pathways in both HFpEF and HFrEF mice. Results: One hundred and nine differentially expressed metabolites were detected in HFpEF mice, and 270 differentially expressed metabolites were detected in HFrEF mice. Compared with the control group, the most significantly changed metabolite in HFpEF mice was glycerophospholipids, while HFrEF mice presented with the largest proportion of carboxylic acids and their derivatives. KEGG enrichment and pathway impact analysis showed that the differentially expressed metabolites in HFpEF mice were mainly enriched in pathways such as biosynthesis of unsaturated fatty acids, ether lipid metabolism, amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and arginine and proline metabolism. The differentially expressed metabolites in HFrEF mice were mainly enriched in arginine and proline metabolism, glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and arachidonic acid metabolism, etc. Conclusions: HFpEF mice have a significantly different myocardial metabolite expression profile compared with HFrEF mice. In addition, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, glycerophospholipid metabolism and arginine and proline metabolism are significantly altered in both HFpEF and HFrEF mice, suggesting that these metabolic pathways may play an important role in disease progression in both types of heart failure.
Mice
;
Animals
;
Heart Failure/metabolism*
;
Stroke Volume
;
Chromatography, Liquid
;
Tandem Mass Spectrometry
;
Metabolomics
;
Arachidonic Acids
;
Proline
10.Advances of peptide-centric data-independent acquisition analysis algorithms and software tools.
Yingying ZHANG ; Kunxian SHU ; Cheng CHANG
Chinese Journal of Biotechnology 2023;39(9):3579-3593
Data-independent acquisition (DIA) is a high-throughput, unbiased mass spectrometry data acquisition method which has good quantitative reproducibility and is friendly to low-abundance proteins. It becomes the preferred choice for clinical proteomic studies especially for large cohort studies in recent years. The mass-spectrometry (MS)/MS spectra generated by DIA is usually heavily mixed with fragment ion information of multiple peptides, which makes the protein identification and quantification more difficult. Currently, DIA data analysis methods fall into two main categories, namely peptide-centric and spectrum-centric. The peptide-centric strategy is more sensitive for identification and more accurate for quantification. Thus, it has become the mainstream strategy for DIA data analysis, which includes four key steps: building a spectral library, extracting ion chromatogram, feature scoring and statistical quality control. This work reviews the peptide-centric DIA data analysis procedure, introduces the corresponding algorithms and software tools, and summarizes the improvements for the existing algorithms. Finally, the future development directions are discussed.
Humans
;
Proteomics/methods*
;
Reproducibility of Results
;
Peptides/chemistry*
;
Software
;
Algorithms
;
Tandem Mass Spectrometry/methods*
;
Proteome/analysis*


Result Analysis
Print
Save
E-mail