1.Frequent association of malignant effusions in plasmablastic lymphoma:a single‑institutional experience of nine cases in Taiwan
Bo‑Jung CHEN ; Yu‑Ting KUO ; Sheng‑Tsung CHANG ; Khin‑Than WIN ; Shang‑Wen CHEN ; Sheng‑Yen HSIAO ; Yin‑Hsun FENG ; Yen‑Chuan HSIEH ; Shih‑Sung CHUANG
Blood Research 2025;60():22-
Purpose:
Plasmablastic lymphoma (PBL) is a rare, aggressive lymphoma that is characterized by terminal B-cell differ‑ entiation. In the West, PBL usually occurs in patients with immunodeficiencies, particularly those induced by human immunodeficiency virus (HIV) infection. We investigated the clinicopathological features of PBL at a single institute in Taiwan, where HIV infection is rare.
Methods:
This retrospective chart review identified PBL cases that were treated at a single institute in southern Tai‑ wan between 2008 and 2024.
Results:
We identified nine patients (four males and five females; median age 71 years). Of the eight patients tested for HIV, only one tested positive. Pathologically, the tumors showed plasmablastic morphology and immunopheno‑ type, and three (33%) cases tested positive for Epstein–Barr virus. Six (67%) patients presented with Stage IV disease, including five (56%) with malignant effusion. Six patients were treated with chemotherapy and the remaining three received only supportive care. During a median follow-up of 10 months, five patients died of progressive disease, two died of unrelated diseases, and two were alive with PBL relapse.
Conclusion
In Taiwan, PBL constitutes a rare and aggressive clinical condition and is frequently associated with malignant effusion. In contrast to Western patients, the PBL in most patients from Taiwan was unrelated to HIV infection.
2.Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A Radiomics and Support Vector Machine-Based Approach to Overall Survival Estimation
Jiunn-Kai CHONG ; Priyanka JAIN ; Shivani PRASAD ; Navneet Kumar DUBEY ; Sanjay SAXENA ; Wen-Cheng LO
Journal of Korean Neurosurgical Society 2025;68(1):7-18
Objective:
: Glioblastoma multiforme (GBM), particularly the isocitrate dehydrogenase (IDH)-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches.
Methods:
: This study utilizes a support vector machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (<12 months) and long (≥12 months) survivors. A dataset comprising multi-parametric magnetic resonance imaging scans from 574 patients was analyzed. Radiomic features were extracted from T1, T2, fluid-attenuated inversion recovery, and T1 with gadolinium (T1GD) sequences. Low variance features were removed, and recursive feature elimination was used to select the most informative features. The SVM model was trained using a k-fold cross-validation approach. Furthermore, clinical parameters such as age, gender, and MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status were integrated to enhance prediction accuracy.
Results:
: The model showed reasonable results in terms of cross-validated area under the curve of 0.84 (95% confidence interval, 0.80–0.90) with (p<0.001) effectively categorizing patients into short and long survivors. Log-rank test (chi-square statistics) analysis for the developed model was 0.00029 along with the 1.20 Cohen’s d effect size. Most importantly, clinical data integration further refined the survival estimates, providing a more fitted prediction that considers individual patient characteristics by Kaplan-Meier curve with p-value <0.0001.
Conclusion
: The proposed method significantly enhances the predictive accuracy of OS outcomes in GBM, IDH-wildtype patients. By integrating detailed imaging features with key clinical indicators, this model offers a robust tool for personalized treatment planning, potentially improving OS.
3.Zinc Finger Protein 639 Expression Is a Novel Prognostic Determinant in Breast Cancer
Fang LEE ; Shih-Ping CHENG ; Ming-Jen CHEN ; Wen-Chien HUANG ; Yi-Min LIU ; Shao-Chiang CHANG ; Yuan-Ching CHANG
Journal of Breast Cancer 2025;28(2):86-98
Purpose:
Zinc finger protein 639 (ZNF639) is often found within the overlapping amplicon of PIK3CA, and previous studies suggest its involvement in the pathogenesis of esophageal and oral squamous cell carcinomas. However, its expression and significance in breast cancer remain uncharacterized.
Methods:
Immunohistochemical analysis of ZNF639 was performed using tissue microarrays.Functional studies, including colony formation, Transwell cell migration, and in vivo metastasis, were conducted on breast tumor cells with ZNF639 knockdown via small interfering RNA transfection.
Results:
Reduced ZNF639 immunoreactivity was observed in 82% of the breast cancer samples, independent of hormone receptor and human epidermal growth factor receptor 2 status. In multivariate Cox regression analyses, ZNF639 expression was associated with favorable survival outcomes, including recurrence-free survival (hazard ratio, 0.35; 95% confidence interval [CI], 0.14–0.89) and overall survival (hazard ratio, 0.41; 95% CI, 0.16– 1.05). ZNF639 knockdown increased clonogenicity, cell motility, and lung metastasis in NOD/ SCID mice. Following the ZNF639 knockdown, the expression of Snail1, vimentin, and C-C chemokine ligand 20 (CCL20) was upregulated, and the changes in cell phenotype mediated by ZNF639 were reversed by the subsequent knockdown of CCL20.
Conclusion
Low ZNF639 expression is a novel prognostic factor for recurrence-free survival in patients with breast cancer.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.Optimizing Glioblastoma, IDH-wildtype Treatment Outcomes : A Radiomics and Support Vector Machine-Based Approach to Overall Survival Estimation
Jiunn-Kai CHONG ; Priyanka JAIN ; Shivani PRASAD ; Navneet Kumar DUBEY ; Sanjay SAXENA ; Wen-Cheng LO
Journal of Korean Neurosurgical Society 2025;68(1):7-18
Objective:
: Glioblastoma multiforme (GBM), particularly the isocitrate dehydrogenase (IDH)-wildtype type, represents a significant clinical challenge due to its aggressive nature and poor prognosis. Despite advancements in medical imaging and its modalities, survival rates have not improved significantly, demanding innovative treatment planning and outcome prediction approaches.
Methods:
: This study utilizes a support vector machine (SVM) classifier using radiomics features to predict the overall survival (OS) of GBM, IDH-wildtype patients to short (<12 months) and long (≥12 months) survivors. A dataset comprising multi-parametric magnetic resonance imaging scans from 574 patients was analyzed. Radiomic features were extracted from T1, T2, fluid-attenuated inversion recovery, and T1 with gadolinium (T1GD) sequences. Low variance features were removed, and recursive feature elimination was used to select the most informative features. The SVM model was trained using a k-fold cross-validation approach. Furthermore, clinical parameters such as age, gender, and MGMT (O6-methylguanine-DNA methyltransferase) promoter methylation status were integrated to enhance prediction accuracy.
Results:
: The model showed reasonable results in terms of cross-validated area under the curve of 0.84 (95% confidence interval, 0.80–0.90) with (p<0.001) effectively categorizing patients into short and long survivors. Log-rank test (chi-square statistics) analysis for the developed model was 0.00029 along with the 1.20 Cohen’s d effect size. Most importantly, clinical data integration further refined the survival estimates, providing a more fitted prediction that considers individual patient characteristics by Kaplan-Meier curve with p-value <0.0001.
Conclusion
: The proposed method significantly enhances the predictive accuracy of OS outcomes in GBM, IDH-wildtype patients. By integrating detailed imaging features with key clinical indicators, this model offers a robust tool for personalized treatment planning, potentially improving OS.
9.Frequent association of malignant effusions in plasmablastic lymphoma:a single‑institutional experience of nine cases in Taiwan
Bo‑Jung CHEN ; Yu‑Ting KUO ; Sheng‑Tsung CHANG ; Khin‑Than WIN ; Shang‑Wen CHEN ; Sheng‑Yen HSIAO ; Yin‑Hsun FENG ; Yen‑Chuan HSIEH ; Shih‑Sung CHUANG
Blood Research 2025;60():22-
Purpose:
Plasmablastic lymphoma (PBL) is a rare, aggressive lymphoma that is characterized by terminal B-cell differ‑ entiation. In the West, PBL usually occurs in patients with immunodeficiencies, particularly those induced by human immunodeficiency virus (HIV) infection. We investigated the clinicopathological features of PBL at a single institute in Taiwan, where HIV infection is rare.
Methods:
This retrospective chart review identified PBL cases that were treated at a single institute in southern Tai‑ wan between 2008 and 2024.
Results:
We identified nine patients (four males and five females; median age 71 years). Of the eight patients tested for HIV, only one tested positive. Pathologically, the tumors showed plasmablastic morphology and immunopheno‑ type, and three (33%) cases tested positive for Epstein–Barr virus. Six (67%) patients presented with Stage IV disease, including five (56%) with malignant effusion. Six patients were treated with chemotherapy and the remaining three received only supportive care. During a median follow-up of 10 months, five patients died of progressive disease, two died of unrelated diseases, and two were alive with PBL relapse.
Conclusion
In Taiwan, PBL constitutes a rare and aggressive clinical condition and is frequently associated with malignant effusion. In contrast to Western patients, the PBL in most patients from Taiwan was unrelated to HIV infection.
10.Zinc Finger Protein 639 Expression Is a Novel Prognostic Determinant in Breast Cancer
Fang LEE ; Shih-Ping CHENG ; Ming-Jen CHEN ; Wen-Chien HUANG ; Yi-Min LIU ; Shao-Chiang CHANG ; Yuan-Ching CHANG
Journal of Breast Cancer 2025;28(2):86-98
Purpose:
Zinc finger protein 639 (ZNF639) is often found within the overlapping amplicon of PIK3CA, and previous studies suggest its involvement in the pathogenesis of esophageal and oral squamous cell carcinomas. However, its expression and significance in breast cancer remain uncharacterized.
Methods:
Immunohistochemical analysis of ZNF639 was performed using tissue microarrays.Functional studies, including colony formation, Transwell cell migration, and in vivo metastasis, were conducted on breast tumor cells with ZNF639 knockdown via small interfering RNA transfection.
Results:
Reduced ZNF639 immunoreactivity was observed in 82% of the breast cancer samples, independent of hormone receptor and human epidermal growth factor receptor 2 status. In multivariate Cox regression analyses, ZNF639 expression was associated with favorable survival outcomes, including recurrence-free survival (hazard ratio, 0.35; 95% confidence interval [CI], 0.14–0.89) and overall survival (hazard ratio, 0.41; 95% CI, 0.16– 1.05). ZNF639 knockdown increased clonogenicity, cell motility, and lung metastasis in NOD/ SCID mice. Following the ZNF639 knockdown, the expression of Snail1, vimentin, and C-C chemokine ligand 20 (CCL20) was upregulated, and the changes in cell phenotype mediated by ZNF639 were reversed by the subsequent knockdown of CCL20.
Conclusion
Low ZNF639 expression is a novel prognostic factor for recurrence-free survival in patients with breast cancer.

Result Analysis
Print
Save
E-mail