1.Recent development of Pichia pastoris system: current status and future perspective.
Chinese Journal of Biotechnology 2015;31(6):929-938
With more than 20 years of development, Pichia pastoris system has been extensively used both on a lab and industrial scale. This review outlines the progress made on P. pastoris from aspects of protein expression, molecular engineering tools and methods, and biochemical production. This review also provides perspectives on the current challenges and future directions of this important system.
Bioengineering
;
Industrial Microbiology
;
Pichia
2.Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli.
Lei SUN ; Fan YANG ; Taicheng ZHU ; Xinghua LI ; Hongbing SUN ; Yin LI ; Zhenghong XU ; Yanping ZHANG
Chinese Journal of Biotechnology 2016;32(1):51-63
1,2,4-Butanetriol (BT) is an important non-natural chemical with a variety of industrial applications. A recombinant Escherichia coli biosynthesizing BT from D-xylose was constructed by heterologously expressing xdh and mdlC, and knocking out competing pathway genes including xylA, xylB, yjhE, yagH and ycdW. To optimize BT synthesis pathway, the third catalytic step that catalyzes the decarboxylation reaction of 3-deoxy-D-glycero-pentulosonic acid was identified as a potential bottleneck. Consequently, 2-keto acid decarboxylases from three different microorganisms were screened, and the kivD gene from Lactococcus lactis was found to increase BT titer by 191%. The improved strain BW-025 reached a final BT titer of 2.38 g/L under optimized transformation conditions. Attempts on synthetic pathway optimization were also made by fine-tuning the expression levels of each enzyme involved in the whole pathway based on BW-025. As a result, an xdh overexpressed recombinant strain, BW-074 was finally generated, with 48.62% higher BT production than that of BW-025.
Butanols
;
metabolism
;
Escherichia coli
;
metabolism
;
Gene Knockout Techniques
;
Genetic Engineering
;
Industrial Microbiology
;
methods
;
Metabolic Networks and Pathways
3.Direct secretory expression of active microbial transglutaminase in Pichia pastoris.
Pengfei LI ; Hongbing SUN ; Lijin YOU ; Fuyu GONG ; Zao CHEN ; Ailian ZHANG ; Taicheng ZHU
Chinese Journal of Biotechnology 2013;29(2):180-188
Direct secretory expression of active microbial transglutaminase (MTG) using heterologous hosts is a promising strategy, although its production level still needs to be improved for industrial production. Pichia pastoris is one of the most efficient expression systems developed in recent years. In this study, secretory expression of active MTG was successfully achieved by co-expressing the pro sequence and mature MTG genes in P. pastoris. Furthermore, we optimized the copy number of pro/MTG expression cassettes and the fermentation conditions. MTG production level reached 7.3 U/mL in 1-liter fermentor through high density fermentation, providing the feasiblity for industrial scale preparation of MTG.
Fermentation
;
Genetic Vectors
;
genetics
;
Pichia
;
enzymology
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Streptomyces
;
enzymology
;
Transglutaminases
;
biosynthesis
;
genetics
4.Heterologous expression and function evaluation of Gloeobacter violaceus rhodopsin in Escherichia coli.
Jiayu FANG ; Taicheng ZHU ; Yanping ZHANG ; Yin LI
Chinese Journal of Biotechnology 2021;37(2):604-614
Proton-pumping rhodopsin (PPR) is a simple photosystem widely distributed in nature. By binding to retinal, PPR can transfer protons from the cytoplasmic to the extracellular side of the membrane under illumination, creating a proton motive force (PMF) to synthesize ATP. The conversion of light into chemical energy by introducing rhodopsin into nonphotosynthetic engineered strains could contribute to promoting growth, increasing production and improving cell tolerance of microbial hosts. Gloeorhodopsin (GR) is a PPR from Gloeobacter violaceus PCC 7421. We expressed GR heterologously in Escherichia coli and verified its functional activity. GR could properly function as a light-driven proton pump and its absorption maximum was at 539 nm. We observed that GR was mainly located on the cell membrane and no inclusion body could be found. After increasing expression level by ribosome binding site optimization, intracellular ATP increased, suggesting that GR could supply additional energy to heterologous hosts under given conditions.
Cyanobacteria/metabolism*
;
Escherichia coli/metabolism*
;
Proton Pumps
;
Rhodopsin/metabolism*
;
Rhodopsins, Microbial/metabolism*