1.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
2.Age of asthma onset and its relevance to adult asthma in the general population
Ha-Kyeong WON ; Yewon KANG ; Jin AN ; Ji-Hyang LEE ; Min-Gyu KANG ; Tae-Bum KIM ; Woo-Jung SONG
Allergy, Asthma & Respiratory Disease 2025;13(1):22-29
Purpose:
The classification of asthma phenotypes frequently depends on the age of onset. However, the rationale for specific age cutoffs remains unclear. This study aimed to explore the distribution of asthma onset age, to define subgroups based on onset age, and to examine their characteristics within a broad Korean population.
Methods:
An analysis of cross-sectional data involving 56,632 participants from the Korean National Health and Nutrition Examination Survey (2010–2016) was conducted. Data on asthma history, including diagnosis, self-reported age of asthma onset, and current disease status, were collected using structured questionnaires.
Results:
The distribution of asthma onset age showed a distinct peak in early childhood, with a decline between the ages 15 and 20.Based on this distribution, asthma was categorized into childhood-onset ( ≤ 18 years) and adult-onset ( > 18 years) for further analysis.Multivariate analyses indicated that adult-onset asthma was associated with older age, female sex, obesity, and a history of smoking, whereas childhood-onset asthma was linked to younger age, male sex, allergic rhinitis, and atopic dermatitis. Among the adultonset group, current asthma had a later onset age, increased history of smoking history, and atopic dermatitis compared to past asthma.
Conclusion
This analysis of nationwide general population data suggests that an age threshold around 18 years may be relevant for defining adult-onset asthma.
3.Age of asthma onset and its relevance to adult asthma in the general population
Ha-Kyeong WON ; Yewon KANG ; Jin AN ; Ji-Hyang LEE ; Min-Gyu KANG ; Tae-Bum KIM ; Woo-Jung SONG
Allergy, Asthma & Respiratory Disease 2025;13(1):22-29
Purpose:
The classification of asthma phenotypes frequently depends on the age of onset. However, the rationale for specific age cutoffs remains unclear. This study aimed to explore the distribution of asthma onset age, to define subgroups based on onset age, and to examine their characteristics within a broad Korean population.
Methods:
An analysis of cross-sectional data involving 56,632 participants from the Korean National Health and Nutrition Examination Survey (2010–2016) was conducted. Data on asthma history, including diagnosis, self-reported age of asthma onset, and current disease status, were collected using structured questionnaires.
Results:
The distribution of asthma onset age showed a distinct peak in early childhood, with a decline between the ages 15 and 20.Based on this distribution, asthma was categorized into childhood-onset ( ≤ 18 years) and adult-onset ( > 18 years) for further analysis.Multivariate analyses indicated that adult-onset asthma was associated with older age, female sex, obesity, and a history of smoking, whereas childhood-onset asthma was linked to younger age, male sex, allergic rhinitis, and atopic dermatitis. Among the adultonset group, current asthma had a later onset age, increased history of smoking history, and atopic dermatitis compared to past asthma.
Conclusion
This analysis of nationwide general population data suggests that an age threshold around 18 years may be relevant for defining adult-onset asthma.
4.Age of asthma onset and its relevance to adult asthma in the general population
Ha-Kyeong WON ; Yewon KANG ; Jin AN ; Ji-Hyang LEE ; Min-Gyu KANG ; Tae-Bum KIM ; Woo-Jung SONG
Allergy, Asthma & Respiratory Disease 2025;13(1):22-29
Purpose:
The classification of asthma phenotypes frequently depends on the age of onset. However, the rationale for specific age cutoffs remains unclear. This study aimed to explore the distribution of asthma onset age, to define subgroups based on onset age, and to examine their characteristics within a broad Korean population.
Methods:
An analysis of cross-sectional data involving 56,632 participants from the Korean National Health and Nutrition Examination Survey (2010–2016) was conducted. Data on asthma history, including diagnosis, self-reported age of asthma onset, and current disease status, were collected using structured questionnaires.
Results:
The distribution of asthma onset age showed a distinct peak in early childhood, with a decline between the ages 15 and 20.Based on this distribution, asthma was categorized into childhood-onset ( ≤ 18 years) and adult-onset ( > 18 years) for further analysis.Multivariate analyses indicated that adult-onset asthma was associated with older age, female sex, obesity, and a history of smoking, whereas childhood-onset asthma was linked to younger age, male sex, allergic rhinitis, and atopic dermatitis. Among the adultonset group, current asthma had a later onset age, increased history of smoking history, and atopic dermatitis compared to past asthma.
Conclusion
This analysis of nationwide general population data suggests that an age threshold around 18 years may be relevant for defining adult-onset asthma.
5.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
6.Age of asthma onset and its relevance to adult asthma in the general population
Ha-Kyeong WON ; Yewon KANG ; Jin AN ; Ji-Hyang LEE ; Min-Gyu KANG ; Tae-Bum KIM ; Woo-Jung SONG
Allergy, Asthma & Respiratory Disease 2025;13(1):22-29
Purpose:
The classification of asthma phenotypes frequently depends on the age of onset. However, the rationale for specific age cutoffs remains unclear. This study aimed to explore the distribution of asthma onset age, to define subgroups based on onset age, and to examine their characteristics within a broad Korean population.
Methods:
An analysis of cross-sectional data involving 56,632 participants from the Korean National Health and Nutrition Examination Survey (2010–2016) was conducted. Data on asthma history, including diagnosis, self-reported age of asthma onset, and current disease status, were collected using structured questionnaires.
Results:
The distribution of asthma onset age showed a distinct peak in early childhood, with a decline between the ages 15 and 20.Based on this distribution, asthma was categorized into childhood-onset ( ≤ 18 years) and adult-onset ( > 18 years) for further analysis.Multivariate analyses indicated that adult-onset asthma was associated with older age, female sex, obesity, and a history of smoking, whereas childhood-onset asthma was linked to younger age, male sex, allergic rhinitis, and atopic dermatitis. Among the adultonset group, current asthma had a later onset age, increased history of smoking history, and atopic dermatitis compared to past asthma.
Conclusion
This analysis of nationwide general population data suggests that an age threshold around 18 years may be relevant for defining adult-onset asthma.
7.Age of asthma onset and its relevance to adult asthma in the general population
Ha-Kyeong WON ; Yewon KANG ; Jin AN ; Ji-Hyang LEE ; Min-Gyu KANG ; Tae-Bum KIM ; Woo-Jung SONG
Allergy, Asthma & Respiratory Disease 2025;13(1):22-29
Purpose:
The classification of asthma phenotypes frequently depends on the age of onset. However, the rationale for specific age cutoffs remains unclear. This study aimed to explore the distribution of asthma onset age, to define subgroups based on onset age, and to examine their characteristics within a broad Korean population.
Methods:
An analysis of cross-sectional data involving 56,632 participants from the Korean National Health and Nutrition Examination Survey (2010–2016) was conducted. Data on asthma history, including diagnosis, self-reported age of asthma onset, and current disease status, were collected using structured questionnaires.
Results:
The distribution of asthma onset age showed a distinct peak in early childhood, with a decline between the ages 15 and 20.Based on this distribution, asthma was categorized into childhood-onset ( ≤ 18 years) and adult-onset ( > 18 years) for further analysis.Multivariate analyses indicated that adult-onset asthma was associated with older age, female sex, obesity, and a history of smoking, whereas childhood-onset asthma was linked to younger age, male sex, allergic rhinitis, and atopic dermatitis. Among the adultonset group, current asthma had a later onset age, increased history of smoking history, and atopic dermatitis compared to past asthma.
Conclusion
This analysis of nationwide general population data suggests that an age threshold around 18 years may be relevant for defining adult-onset asthma.
8.Thoracic spinal cord damage in rat following cardiac arrest: neuronal loss, blood-spinal cord barrier leakage, and astrocyte endfeet disruption
Myoung Cheol SHIN ; Hyun-Jin TAE ; Joon Ha PARK ; Ji Hyeon AHN ; Dae Won KIM ; Moo-Ho WON ; Jun Hwi CHO ; Tae-Kyeong LEE
Journal of the Korean Society of Emergency Medicine 2025;36(1):1-11
Objective:
Cardiac arrest and cardiopulmonary resuscitation (CA/R) lead to whole-body ischemia and reperfusion (IR) injury, causing multiple organ dysfunction, including ischemic spinal cord injury. The thoracic spinal cord levels are crucial for maintaining the sympathetic functions vital for life. This study examined blood-spinal cord barrier (BSCB) leakage and astrocyte endfeet (AEF) disruption and their effects on survival, physiological variables, and neuronal damage/death in the intermediate zone (IMZ) at the seventh thoracic spinal cord level after asphyxial CA/R in rats.
Methods:
The rats underwent whole-body IR injury by asphyxial CA/R. Kaplan-Meier analysis was conducted to assess the cumulative survival post-CA/R. The histological changes post-CA/R were evaluated using immunohistochemistry, histofluorescence, and double histofluorescence.
Results:
No significant differences in body weight, mean arterial pressure, and heart rate were found between the sham and CA/R groups post-CA/R. The survival rates in the CA/R group at 12, 24, and 48 hours were 62.58%, 36.37%, and 7.8%, respectively. Neuronal loss and BSCB leakage began 12 hours post-CA/R, increasing with time. Reactive astrogliosis appeared at 12 hours and increased, while AEF disruption around blood vessels was evident at 48 hours.
Conclusion
The survival rate declined significantly by 48 hours post-CA/R. Neuronal loss and BSCB leakage in the thoracic spinal cord IMZ was evident at 12 hours and significant by 48 hours, aligning with AEF disruption. Neuronal loss in the thoracic spinal cord IMZ post-CA/R may be related to BSCB leakage and AEF disruption.
9. Local Governance for COVID-19Response of Daegu Metropolitan City
Kyeong-Soo LEE ; Jung Jeung LEE ; Keon-Yeop KIM ; Jong-Yeon KIM ; Tae-Yoon HWANG ; Nam-Soo HONG ; Jun Hyun HWANG ; Jaeyoung HA
Journal of Agricultural Medicine & Community Health 2024;49(1):13-36
Objectives:
The purpose of this field case report is 1) to analyze the community's strategy and performance in responding to infectious diseases through the case of COVID-19 infectious disease crisis response of Daegu Metropolitan City, and 2) to interpret this case using governance theory and infectious disease response governance framework. and 3) to propose a strategic model to prepare for future infectious disease outbreaks of the community.
Methods:
Cases of Daegu Metropolitan City's infectious disease crisis response were analyzed through researchers' participatory observations. And review of OVID-19 White Paper of Daegu Metropolitan City, Daegu Medical Association's COVID-19 White Paper, and literature review of domestic and international governance, and administrative documents.
Results:
Through the researcher's participatory observation and literature review, 1) establishment of leadership and response system to respond to the infectious disease crisis in Daegu Metropolitan City, 2) citizen’s participation and communication strategy through the pan-citizen response committee, 3) cooperation between Daegu Metropolitan City and governance of public-private medical facilities, 4) decision-making and crisis response through participation and communication between the Daegu Metropolitan City Medical Association, Medi-City Daegu Council, and medical experts of private sector, 5) symptom monitoring and patient triage strategies and treatment response for confirmed infectious disease patients by member of Daegu Medical Association, 6) strategies and implications for establishing and utilizing a local infectious disease crisis response information system were derived.
Conclusions
The results of the study empirically demonstrate that collaborative governance of the community through the participation of citizens, private sector experts, and community medical facilities is a key element for effective response to infectious disease crises.
10.Lymphadenectomy in clinically early epithelial ovarian cancer and survival analysis (LILAC): a Gynecologic Oncology Research Investigators Collaboration (GORILLA-3002) retrospective study
Eun Jung YANG ; A Jin LEE ; Woo Yeon HWANG ; Suk-Joon CHANG ; Hee Seung KIM ; Nam Kyeong KIM ; Yeorae KIM ; Tae Wook KONG ; Eun Ji LEE ; Soo Jin PARK ; Joo-Hyuk SON ; Dong Hoon SUH ; Dong Hee SON ; Seung-Hyuk SHIM
Journal of Gynecologic Oncology 2024;35(4):e75-
Objective:
This study aimed to evaluate the therapeutic role of lymphadenectomy in patients surgically treated for clinically early-stage epithelial ovarian cancer (EOC).
Methods:
This retrospective, multicenter study included patients with clinically earlystage EOC based on preoperative abdominal-pelvic computed tomography or magnetic resonance imaging findings between 2007 and 2021. Oncologic outcomes and perioperative complications were compared between the lymphadenectomy and non-lymphadenectomy groups. Independent prognostic factors were determined using Cox regression analysis.Disease-free survival (DFS) was the primary outcome. Overall survival (OS) and perioperative outcomes were the secondary outcomes.
Results:
In total, 586 patients (lymphadenectomy group, n=453 [77.3%]; nonlymphadenectomy groups, n=133 [22.7%]) were eligible. After surgical staging, upstaging was identified based on the presence of lymph node metastasis in 14 (3.1%) of 453 patients.No significant difference was found in the 5-year DFS (88.9% vs. 83.4%, p=0.203) and 5-year OS (97.2% vs. 97.7%, p=0.895) between the two groups. Using multivariable analysis, lymphadenectomy was not significantly associated with DFS or OS. However, using subgroup analysis, the lymphadenectomy group with serous histology had higher 5-year DFS rates than did the non-lymphadenectomy group (86.5% vs. 74.4%, p=0.048; adjusted hazard ratio=0.281; 95% confidence interval=0.107–0.735; p=0.010). The lymphadenectomy group had longer operating time (p<0.001), higher estimated blood loss (p<0.001), and higher perioperative complication rate (p=0.004) than did the non-lymphadenectomy group.
Conclusion
In patients with clinically early-stage EOC with serous histology, lymphadenectomy was associated with survival benefits. Considering its potential harm,

Result Analysis
Print
Save
E-mail