1.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
2.Occupation classification model based on DistilKoBERT: using the 5th and 6th Korean Working Condition Surveys
Tae-Yeon KIM ; Seong-Uk BAEK ; Myeong-Hun LIM ; Byungyoon YUN ; Domyung PAEK ; Kyung Ehi ZOH ; Kanwoo YOUN ; Yun Keun LEE ; Yangho KIM ; Jungwon KIM ; Eunsuk CHOI ; Mo-Yeol KANG ; YoonHo CHO ; Kyung-Eun LEE ; Juho SIM ; Juyeon OH ; Heejoo PARK ; Jian LEE ; Jong-Uk WON ; Yu-Min LEE ; Jin-Ha YOON
Annals of Occupational and Environmental Medicine 2024;36(1):e19-
Accurate occupation classification is essential in various fields, including policy development and epidemiological studies. This study aims to develop an occupation classification model based on DistilKoBERT. This study used data from the 5th and 6th Korean Working Conditions Surveys conducted in 2017 and 2020, respectively. A total of 99,665 survey participants, who were nationally representative of Korean workers, were included. We used natural language responses regarding their job responsibilities and occupational codes based on the Korean Standard Classification of Occupations (7th version, 3-digit codes). The dataset was randomly split into training and test datasets in a ratio of 7:3. The occupation classification model based on DistilKoBERT was fine-tuned using the training dataset, and the model was evaluated using the test dataset. The accuracy, precision, recall, and F1 score were calculated as evaluation metrics. The final model, which classified 28,996 survey participants in the test dataset into 142 occupational codes, exhibited an accuracy of 84.44%. For the evaluation metrics, the precision, recall, and F1 score of the model, calculated by weighting based on the sample size, were 0.83, 0.84, and 0.83, respectively. The model demonstrated high precision in the classification of service and sales workers yet exhibited low precision in the classification of managers. In addition, it displayed high precision in classifying occupations prominently represented in the training dataset. This study developed an occupation classification system based on DistilKoBERT, which demonstrated reasonable performance. Despite further efforts to enhance the classification accuracy, this automated occupation classification model holds promise for advancing epidemiological studies in the fields of occupational safety and health.
3.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
4.Occupation classification model based on DistilKoBERT: using the 5th and 6th Korean Working Condition Surveys
Tae-Yeon KIM ; Seong-Uk BAEK ; Myeong-Hun LIM ; Byungyoon YUN ; Domyung PAEK ; Kyung Ehi ZOH ; Kanwoo YOUN ; Yun Keun LEE ; Yangho KIM ; Jungwon KIM ; Eunsuk CHOI ; Mo-Yeol KANG ; YoonHo CHO ; Kyung-Eun LEE ; Juho SIM ; Juyeon OH ; Heejoo PARK ; Jian LEE ; Jong-Uk WON ; Yu-Min LEE ; Jin-Ha YOON
Annals of Occupational and Environmental Medicine 2024;36(1):e19-
Accurate occupation classification is essential in various fields, including policy development and epidemiological studies. This study aims to develop an occupation classification model based on DistilKoBERT. This study used data from the 5th and 6th Korean Working Conditions Surveys conducted in 2017 and 2020, respectively. A total of 99,665 survey participants, who were nationally representative of Korean workers, were included. We used natural language responses regarding their job responsibilities and occupational codes based on the Korean Standard Classification of Occupations (7th version, 3-digit codes). The dataset was randomly split into training and test datasets in a ratio of 7:3. The occupation classification model based on DistilKoBERT was fine-tuned using the training dataset, and the model was evaluated using the test dataset. The accuracy, precision, recall, and F1 score were calculated as evaluation metrics. The final model, which classified 28,996 survey participants in the test dataset into 142 occupational codes, exhibited an accuracy of 84.44%. For the evaluation metrics, the precision, recall, and F1 score of the model, calculated by weighting based on the sample size, were 0.83, 0.84, and 0.83, respectively. The model demonstrated high precision in the classification of service and sales workers yet exhibited low precision in the classification of managers. In addition, it displayed high precision in classifying occupations prominently represented in the training dataset. This study developed an occupation classification system based on DistilKoBERT, which demonstrated reasonable performance. Despite further efforts to enhance the classification accuracy, this automated occupation classification model holds promise for advancing epidemiological studies in the fields of occupational safety and health.
5.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
6.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
7.Occupation classification model based on DistilKoBERT: using the 5th and 6th Korean Working Condition Surveys
Tae-Yeon KIM ; Seong-Uk BAEK ; Myeong-Hun LIM ; Byungyoon YUN ; Domyung PAEK ; Kyung Ehi ZOH ; Kanwoo YOUN ; Yun Keun LEE ; Yangho KIM ; Jungwon KIM ; Eunsuk CHOI ; Mo-Yeol KANG ; YoonHo CHO ; Kyung-Eun LEE ; Juho SIM ; Juyeon OH ; Heejoo PARK ; Jian LEE ; Jong-Uk WON ; Yu-Min LEE ; Jin-Ha YOON
Annals of Occupational and Environmental Medicine 2024;36(1):e19-
Accurate occupation classification is essential in various fields, including policy development and epidemiological studies. This study aims to develop an occupation classification model based on DistilKoBERT. This study used data from the 5th and 6th Korean Working Conditions Surveys conducted in 2017 and 2020, respectively. A total of 99,665 survey participants, who were nationally representative of Korean workers, were included. We used natural language responses regarding their job responsibilities and occupational codes based on the Korean Standard Classification of Occupations (7th version, 3-digit codes). The dataset was randomly split into training and test datasets in a ratio of 7:3. The occupation classification model based on DistilKoBERT was fine-tuned using the training dataset, and the model was evaluated using the test dataset. The accuracy, precision, recall, and F1 score were calculated as evaluation metrics. The final model, which classified 28,996 survey participants in the test dataset into 142 occupational codes, exhibited an accuracy of 84.44%. For the evaluation metrics, the precision, recall, and F1 score of the model, calculated by weighting based on the sample size, were 0.83, 0.84, and 0.83, respectively. The model demonstrated high precision in the classification of service and sales workers yet exhibited low precision in the classification of managers. In addition, it displayed high precision in classifying occupations prominently represented in the training dataset. This study developed an occupation classification system based on DistilKoBERT, which demonstrated reasonable performance. Despite further efforts to enhance the classification accuracy, this automated occupation classification model holds promise for advancing epidemiological studies in the fields of occupational safety and health.
8.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
9.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
10.Harnessing the Power of Voice: A Deep Neural Network Model for Alzheimer’s Disease Detection
Chan-Young PARK ; Minsoo KIM ; YongSoo SHIM ; Nayoung RYOO ; Hyunjoo CHOI ; Ho Tae JEONG ; Gihyun YUN ; Hunboc LEE ; Hyungryul KIM ; SangYun KIM ; Young Chul YOUN
Dementia and Neurocognitive Disorders 2024;23(1):1-10
Background:
and Purpose: Voice, reflecting cerebral functions, holds potential for analyzing and understanding brain function, especially in the context of cognitive impairment (CI) and Alzheimer’s disease (AD). This study used voice data to distinguish between normal cognition and CI or Alzheimer’s disease dementia (ADD).
Methods:
This study enrolled 3 groups of subjects: 1) 52 subjects with subjective cognitive decline; 2) 110 subjects with mild CI; and 3) 59 subjects with ADD. Voice features were extracted using Mel-frequency cepstral coefficients and Chroma.
Results:
A deep neural network (DNN) model showed promising performance, with an accuracy of roughly 81% in 10 trials in predicting ADD, which increased to an average value of about 82.0%±1.6% when evaluated against unseen test dataset.
Conclusions
Although results did not demonstrate the level of accuracy necessary for a definitive clinical tool, they provided a compelling proof-of-concept for the potential use of voice data in cognitive status assessment. DNN algorithms using voice offer a promising approach to early detection of AD. They could improve the accuracy and accessibility of diagnosis, ultimately leading to better outcomes for patients.

Result Analysis
Print
Save
E-mail